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I. INTRODUCTION 

According to the Post-Katrina Emergency Management Reform Act of 2006, state 

and local governments have the responsibility to coordinate evacuation plans for all 

populations, including those with disabilities (Apte & Heath, 2011; Congressional 

Research Service, 2005). Yet, recent natural disasters such as the 2004 Indian Ocean 

tsunami, 2005 Hurricane Katrina in the United States, 2010 Haitian and 2011 Turkey 

earthquakes, and 2011 Great Eastern Coast of Japan tsunami have exposed the 

shortcomings in humanitarian logistics planning for disaster, especially for the critical 

evacuation and response stage.  

A. THESIS PROBLEM  

This study focuses on the problem of assisted evacuation in a short-notice 

disaster. This is distinct from the self-evacuation problem where the concern is with how 

individuals can maximize their survival chances by retreating from the disaster area on 

their own capability, e.g., on foot or self-driven vehicles. Research interests in this latter 

domain pertain more to optimizing pedestrian and vehicle traffic flow, for example, by 

designing shortest possible exit routes, or manipulating traffic directions and intersection 

stopping times. In contrast, assisted evacuation is concerned with how government 

authorities can utilize their facilities, manpower and other resources to provide assistance 

to citizens who cannot self-evacuate, primarily due to lack of private transportation 

means or disability. Typically, an assisted evacuation plan requires such people to 

assemble at selected central locations to board vehicles in order to be mass-evacuated. 

Unfortunately, this type of plan may not be amenable to those who are unable to move 

themselves to the designated assembly locations. At the same time, local authorities face 

many constraints such as limited number and variety of evacuation vehicles, diverse 

mobility level of evacuees, available time, etc. Key to minimizing loss of life often relies 

on quick and optimal determination of vehicle assignment and routes.  
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The thesis problem, to be formally defined in Chapter III, aims to develop a 

routing model that sends vehicles to pick up and evacuate as many people as possible 

from their homes to a common shelter, within given constraints. The model needs to 

generate routes assigning people to vehicles in an optimal sequence, while 

accommodating the various levels of disability and complete the evacuation within a 

limited time window, taking into consideration varied loading and unloading times. It is 

assumed that there is a known list of assisted evacuees, together with their locations and 

disability level mapped to the type of vehicle required (people with lower severity can be 

transported on vehicles designed for people with higher severity but not vice versa). 

There is no prioritization of people, and in the situation where there are several people at 

a single location, it is not assumed that a vehicle has to pick up all of them 

simultaneously.  

While the practitioner realm within which disaster evacuation falls is the 

relatively new field of humanitarian logistics research, the academic discipline 

underpinning such general disaster evacuation problems is the field of Combinatorial 

Optimization (CO), and, more specifically, an important class of problems known as 

Vehicle Routing Problems (VRPs). The VRP primarily deals with the distribution and 

transportation of people and commodities. The problem can be generally described as the 

determination of an optimal set of routes for a fleet of vehicles to serve a given set of 

customer needs (Toth & Vigo, 2002). Numerous variants have extended the basic VRP 

model in order to address real-world problems that are often more complicated and 

dynamic in nature, e.g., restricting the capacity of the vehicle(s) and specifying fixed 

service times for visiting customers. The variant within the VRP family that is relevant to 

the broad disaster evacuation problem is the VRP with Pickup and Delivery (VRPPD). 

The related subvariant of interest for this study is the VRP with Mixed Pickup and 

Delivery (VRPMPD). However, unlike the traditional VRPMPD, the thesis problem is 

saddled with additional complicating factors and constraints such as: 

• Multiplicity and heterogeneity of vehicles and originating depots;  

• Ranked heterogeneity of customers’ transportation need levels which must 
correspond to vehicle capabilities;  
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• Multiplicity of tours the vehicles can make;  

• Total allotted time available; and 

• An objective function that focuses on penalizing number of un-served 
customers, rather than distance or vehicle cost. 

To highlight the complicating difference between the thesis problem and prior VRP’s, it 

will henceforth be called the Overburdened VRP (OB-VRP). 

B. THESIS CONTRIBUTION AND RESEARCH OBJECTIVES 

The primary contributions of the thesis are three-fold. Firstly, it tackles the 

complex OB-VRP first identified and formulated in Apte and Heath (2011), for which, to 

the authors’ knowledge, a solution has yet to appear in literature. The proposed solution 

determines the evacuation routes, vehicle loads, and vehicle route-tour schedule (when to 

evacuate with which vehicle carrying how much load via which route on which tour). 

The thesis also applies an objective function that is based on number of un-served 

customers versus the more conventional time/distance travelling cost and/or vehicle cost 

found in literature. The implication of such a choice is that to improve the cost function, 

an un-served customer must be added to one of the routes, thereby increasing time, 

contrary to traditional VRPs.  

Secondly, the thesis proposes a solution approach that offers feasibility, proximity 

to optimality, scalable speed and implementation elegance. This is key, given that despite 

advances in algorithmic approaches, solving the VRP to optimality remains elusive for 

very large problem sizes, with limitations on exact methods, and difficulty in directly 

applying approximation algorithms for the basic VRP and its classic variants onto the 

significantly more complex OB-VRP. Further, due to the many problem constraints that  

 

 

often apply, obtaining a feasible solution is often a challenge in itself, with repair 

workarounds inevitably rendering the solution algorithm less elegant and slowing down 

the optimization process.  
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Lastly, the thesis demonstrates the use of an efficient space-filling experimental 

design method based on Nearly-Orthogonal Latin Hypercubes (NOLH) to determine the 

best parameters for the proposed solution algorithm to cater for a broad range of test 

scenarios as first demonstrated in Heath, Bard and Morrice (2012). 

C. ORGANIZATION OF THESIS 

Chapter II reviews the literature from both thematic and methodological 

perspectives. The thematic analysis sets up the backdrop by looking at humanitarian 

logistics and disaster response research in general. The methodological survey examines 

the VRP family and discusses general solutions approaches, including exact, heuristic 

and meta-heuristic approaches. Chapter III describes and formally defines the OB-VRP 

as a graph theoretic model, before providing a linear mixed integer formulation first 

presented in Apte and Heath (2011). Chapter IV lays out the proposed solution approach. 

It includes a discussion of preliminary studies and the insights gained in its development, 

as well as a detailed exposition of the complete solution algorithm. Chapter V documents 

the numerical computational results of the solution approach using stylized data. Chapter 

VI summarizes the work undertaken and offers suggestions for future research directions. 
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II. LITERATURE REVIEW 

This chapter provides the background from both thematic and methodological 

perspectives. The thematic review discusses humanitarian logistics and disaster response 

research in general, as well as reviews the literature vis-à-vis the evacuation planning 

problem. The methodological survey explores the VRP family, with emphasis on the 

related subvariants of the Vehicle Routing Problem with Pickups and Deliveries 

(VRPPD). General solution approaches to CO problems and VRPs are discussed. Brief 

descriptions and comparison of exact solution, heuristic and meta-heuristic approaches 

are provided. 

A. HUMANITARIAN LOGISTICS: A THEMATIC REVIEW 

This section looks at disaster and humanitarian aid trends, explains how 

humanitarian logistics is modeled as a supply chain and gives an overview of the 

evacuation planning problem 

1. Disaster and Humanitarian Aid Trends 

A considerable number of the world’s population has suffered in recent years as a 

result of the increasing frequency and magnitude of disasters (Figure 1), with a disaster 

being defined by the U.S. Federal Emergency Management Agency (FEMA) as an event 

that causes 100 deaths or 100 human injuries or damage worth U.S.$ 1 million. The 

Center for Research on the Epidemiology of the Disaster (CRED) reports that in 2010 

alone, 385 natural disasters killed 297,000 people worldwide, affecting over 217 million 

more and causing U.S.$ 123.9 billion of economic damages. In particular, short-notice 

disasters such as floods (e.g., May–August 2010 flood in People’s Republic of China and 

October–December 2010 flood in Thailand) make up four out of the top five natural 

disasters in terms of number of victims affected, while accounting for 92% of the victims 
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in the top ten disasters (Guha-Sapir, Vos, Below & Ponserre, 2011). Thomas and 

Kopczak (2005) forecast natural and man-made disasters over the next 50 years to 

increase five-fold.  

 

 
Figure 1. Trends in natural disaster incidence and victims (From Guha-Sapir et al., 2011) 

With the 2004 budgets of the top 10 humanitarian agencies exceeding $14 billion 

in total, the logistics of aid has attracted increasing scrutiny (Thomas & Kopczak, 2005). 

Yet, recent humanitarian responses to the 2010 Haitian and 2011 Turkey earthquakes, the 

2005 Hurricane Katrina in the United States, and the 2004 Indian Ocean and 2011 Great 

Eastern Coast of Japan tsunami have largely been neither effective nor efficient (Apte, 

2009). Causes of these inefficiencies are many, including the sheer size and scope of such 

disasters, but with rising scrutiny, reports of how public officials are ill-prepared and fail 

to mitigate the resulting damage and loss of lives has become plentiful (Apte, 2009). For 

instance, during Hurricane Katrina, “beginning with the evacuation orders before the 

hurricane landfall, some public officials did not know what those right steps might be” 
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(Nieburg, Waldman, & Krumm, 2005). The Katrina evacuation fiasco thus points to the 

need for more effective mass evacuation planning. 

In particular, McGuire (2007) notes that many older adults, especially the non-

ambulatory, needed assistance evacuating before Hurricane Katrina ravaged New 

Orleans. Instead, many of them were left to fend for themselves. Some died while others 

had their primary disabling conditions untreated for days. Some went without prescribed 

medication, food and fluids while others were exposed to the elements. The need to 

evacuate disabled individuals is especially pertinent given that in the United States, 54% 

of those aged 65 and above have some form of disability (U.S. Census Bureau, 2001) and 

20% have difficulty leaving their residences (Waldrop & Stern, 2003). About 32% of 

U.S. adults aged 70 and above indicate that they have difficulty with walking (McGuire, 

Ford and Ajani, 2006). The degree and severity of walking disability is high: 4% of 

adults aged 65 and above reporting the use of a wheelchair while 13% needed canes, 

crutches or walkers (U.S. Census Bureau, 2001). In a disaster, such individuals are 

among the most vulnerable groups (Saliba, Buchanan & Kington, 2004). They are thus 

likely to experience higher morbidity and mortality (Mokdad et al., 2005) due to 

difficulty when evacuating (Eldar, 1992; Fernandez et al., 2002). 

For those who reside in long-term care establishments, the individual burden is 

less as facilities are legally responsible for evacuating them (Hardin, 2002). The facility 

decides whether to evacuate, arranges transportation, and plans appropriate temporary 

lodging. Long-term care facilities thus generally do not require as much assistance from 

emergency response personnel (Saliba et al., 2004). Moreover, long-term care institutions 

tend to support one another by lodging and caring for evacuated residents (Kuba et al., 

2004; Saliba et al., 2004).  

However, most older and disabled adults do not live in long-term care facilities; 

only 4% do (CDC & MIAH, 2004). This necessitates the home-based disabled and 

elderly and their families to plan for their evacuation (Eldar, 1992; Fernandez, Byard, 

Lin, Benson, & Barbera, 2002), including ensuring that the evacuation vehicle must 

accommodate the ambulatory equipment (Fernandez et al., 2002). Although FEMA 



 8 

recommends that people with disabilities form a self-help network of family, friends and 

neighbors to assist them during emergencies (FEMA, 2004), the extent of its success is 

unknown as older adults and people with disabilities often do not like to be identified for 

fear of becoming vulnerable to crime (IFAS, 1999) or are reluctant to leave their homes 

(Morrow, 1999). As such, the importance of evacuation efforts by the authorities, 

especially for the non-ambulatory, becomes increasingly apparent. 

2. Humanitarian Logistics as a Supply Chain 

Beyond practitioners, the field of humanitarian logistics has increasingly become 

a topic of interest to academics (Kovacs & Spens, 2007). Apte (2009) defines 

humanitarian logistics as a “special branch of logistics which manages [the] response 

supply chain of critical supplies and services with challenges such as demand surges, 

uncertain supplies, critical time windows in [the] face of infrastructure vulnerabilities and 

[the] vast scope and size of the operations.” Humanitarian logistics thus forms a large 

integral part of both disaster response and humanitarian relief (Kovacs & Spens, 2007; 

Thomas & Mizushima, 2005; Van Wassenhove, 2006), with logistics efforts accounting 

for 80% of disaster relief (Trunick, 2005). Although supply chains for humanitarian 

logistics are arguably among the “most dynamic and complex supply chains in the world” 

(Thomas, 2005), proper logistics preparation before a disaster strikes could better 

coordinate processes, technologies, and communications capabilities. This would 

improve the effectiveness and efficiency of the supply chains, and thus that of authorities’ 

response. Academic research, based on inputs from practitioners and using operations 

management and research analysis, could bridge the critical gap between logistical 

expertise and humanitarian relief.  
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Figure 2. Timeline of humanitarian supply chain (After Apte (2009)) 
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and with utmost reliability from a given area that has been considered a danger zone to 

safe locations” (Osman, 2010). Evacuation plans should be developed and rehearsed well 

in advance of disasters (Nisha de Silva, 2001). Nevertheless, evacuation planning is a 

complex problem which has several facets. These include the effects of different 

behavioral reactions and administrative factors (Dow & Cutter, 1998; Drabek, 1999; 

Perry, 1985; Vogt and Sorensen, 1992), the defining of evacuation zones (Sorensen, 

Carnes, & Rogers, 1992) and allocation of shelters (Sherali, Carter, & Hobeika, 1991).  

Specifically on the determination of evacuation paths and schedules, there are two 

principle categories of evacuation situations: microscopic evacuation of buildings, ships 

and airplanes, etc., and macroscopic evacuation of whole cities or geographical regions 

(Hamacher and Tjandra, 2002; Lammel, Rieser, & Nagel, 2008). The former involves the 

evacuation of pedestrians, while the latter is associated with evacuation by vehicle. In the 

area of pedestrian evacuation, there has been considerable research in the last 20 years, 

e.g., Bakuli & Smith (1996) investigated design of building evacuation paths using 

extended queuing network models to improve throughput and total egress time. Excellent 

overviews of pedestrian evacuation models are provided by Schreckenberg & Sharma 

(2001), Galea (2003) and Gattermann, Waldau, and Schreckenberg (2006). 

This thesis focuses on the second category, i.e., metropolitan-level evacuation. 

Under this context, evacuation can be further divided into two sub-categories: pre- and 

post-disaster evacuation (Figure 2.2) (Osman & Ram, 2011). The former focuses on 

precautionary evacuation, where comparison of evacuation time to hazard propagation 

time and associated risk can be conducted a priori. Hence, time and potential risks are the 

key components of this type of evacuation. The latter subcategory focuses on life-saving 

operations, i.e., route clearance and rescue of the injured. In both cases, efficient and 

effective evacuation modeling is needed to identify routes and schedules. Nonetheless, 

this thesis more specifically focuses on addressing the former sub-category of pre-

disaster evacuation.  



 11 

3. Evacuation Modeling 

To resolve some of the traditional but highly complex issues described above, 

humanitarian logisticians and academics are increasingly relying on mathematical 

modeling to find the optimal solution, and increase the robustness of decision-making. 

For instance, initial work in humanitarian aid logistics attempted to locate emergency 

service facilities such as fire stations and ambulances using optimization models based on 

Set Covering Problems (SCP) and Facility Location Problems (FLP) (Cabot, Francis & 

Strary, 1970; Church & ReVelle, 1974; Fitzsimmons, 197; Shmoys, Tardos, & Aardal, 

1997; Toregas, Swain, ReVelle, & Bergman 1971). For the critical supplies distribution 

and transportation problem, Rathi, Church & Solanski (1992) used linear programming 

formulations, while Sheu (2007) presented a hybrid fuzzy clustering optimization 

approach.  

In the arena of macroscopic evacuation planning, literature research has focused 

on traffic assignment and evacuation departure scheduling (Ben-Tal, Chung, Mandalab, 

Yao, 2011), flow optimization, and classic ambulance routing (Parragh, 2009). 

Formulations of evacuation planning problems range from network flow models (Chiu, 

2007; Cova and Johnson, 2003; Hoppe & Tardos, 2007), cell-transmission-models (Chiu, 

Villabos, & Gautam, 2007), traffic assignment models (Chiu & Zheng, 2007), multi-

objective path selection models (Yuan & Wang, 2009), and transshipment models 

(Hoppe and Tardos, 2000). Optimization-based solution algorithms include those based 

on Capacity Constrained Route Planning (Lu, Huang, & Shekhar, 2003; Lu, George & 

Shekhar, 2005; Lu, 2006), Flip High Flip Edge (Kim & Shekhar, 2005), contraflow 

network reconfiguration (Shekhar & Kim, 2006), and Multi-Ant Colony Systems 

(MACS) (Zong, Xiong, Fang, & Li, 2010).  

More realistic but complicating scenarios in the form of multiple commodities, 

customer priorities, and time-dynamic networks are occasionally considered. Haghani 

and Oh (1996) presented a large-scale multi-commodity, multi-modal network flow 

problem with time windows to transport a range of critical supplies using a vehicle fleet 

from depots to affected areas, while Barbarosoglu, Ozdamar & Cevik (2002) developed a 
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mathematical model to efficiently plan crew/fleet configuration and flight routes for 

disaster relief helicopter missions. It aimed to achieve the multiple operational and 

tactical missions of determining: (a) the number of tours undertaken by each helicopter, 

(b) routing of helicopters from operation base to disaster area, (c) load/unload, delivery, 

transshipment and rescue plans of each helicopter in every tour and (d) refueling schedule 

of each helicopter at the operation base. Ozdamar, Ekinci & Kucukyazici (2004) further 

integrated time, solving a dynamic, time-dependent transportation problem during 

ongoing aid delivery. More recently, Yi and Ozdamar (2007) examined the problem of 

coordinating “transportation of commodities from major supply centers to distribution 

centers in affected areas and the transport of wounded people from affected areas to 

temporary and permanent emergency unit” and extended the earlier model as a mixed-

integer, multi-commodity network flow problem treating vehicles as integer commodity 

flows in the first stage and providing schedules using a “vehicle splitting algorithm.” The 

objective was to minimize delay in supplying critical commodities and health services. 

Chiu and Zheng (2007) presented a dynamic traffic assignment modeling technique based 

on a linear programming formulation of the cell transmission model to determine the 

optimal traffic assignment and departure schedule for multi-priority groups in response to 

a no-notice disaster. The objective was to minimize travel time over the entire system.  

Nonetheless, several issues arise in attempting to model the thesis problem using 

such models and frameworks: they do not readily address the different nature of 

constraints or output forms, nor meet the objective of efficient algorithmic speed. For 

instance, Cova and Johnson (2003) did not provide the evacuation schedule, i.e., how 

many times a specific route can be used during evacuation and when to evacuate. Lu et 

al. (2005) presented a heuristic iterative algorithm Capacity Constrained Route Planner 

(CCRP) that finds the minimum time horizon that ensures 100% evacuation. However, 

resulting evacuation paths are not necessarily useful in practice because the evacuation 

paths from CCRP allow intersection nodes to hold flow for some periods of time, which 

is not possible in practice. In Hamacher and Tjandra (2002), the evacuation problem is 

formulated as a time-dynamic network flow optimization model, but its slow solution 

time is a major drawback of their approach for real-world large evacuation networks. In 
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the dynamic transhipment problem (Herer & Tzur, 2001), a specific demand in each time 

period for each destination node is required, which is not always applicable for 

evacuation problems. 

More critically, the abovementioned models do not take into account, nor can be 

readily adapted to address the thesis problem’s complicating constraints in terms of 

heterogeneity of evacuee disability levels, multiplicity and heterogeneity of vehicle fleet 

and capacities, as well as the possibility of multiple tours. Evacuation planning often 

requires specificity and customization. A humanitarian logistics model that is capable of 

addressing the aforementioned multi-dimensional problem is, to the best of the authors’ 

knowledge, non-existent. Given such inadequacies, the authors then turned to the 

established academic field of Vehicle Routing Problems (VRP), the subject of the next 

section, seeking to develop a more viable and tractable VRP-based formulation of the 

thesis problem. 

B. VEHICLE ROUTING PROBLEMS (VRP) AND ITS VARIANTS: A 
METHODOLOGICAL REVIEW 

Fundamentally, the VRP seeks the identification of an optimal set of routes to be 

performed by a fleet of vehicles, located in a depot(s), to fulfill the requirements of a 

given set of geographically-dispersed customers, subject to operational constraints. The 

objective is typically to minimize the global transportation cost (Bodin, Golden, Assad, 

Ball, 1983; Joubert, 2007) or distance travelled (Nagy & Salhi, 2005). The general VRP 

is often formulated as a graph-theoretic problem, with a set of vertices denoting 

originating depot, customer nodes and destination nodes, and an arc set with a non-

negative cost associated with each arc between nodes. 

The VRP and its variants form one of the most important classes of Combinatorial 

Optimization (CO) problems (Toth & Vigo, 2002). It has drawn tremendous interest from 

researchers because of its vital role in planning of distribution, transportation and 

logistics systems in sectors as diverse as bus routing, rubbish collection, mail and parcel 

delivery, food and beverage distribution, dial-a-ride taxi service, ambulance service, etc. 
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Besides road-based transportation applications, the VRP has also been seen in maritime 

and airlift planning.  

The VRP was first introduced by Dantzig and Fulkerson (1954) and expanded by 

Dantzig and Ramser (1959). They described a real-world application concerning the 

delivery of petrol to service stations and proposed the first mathematical programming 

formulation and algorithmic approach. Since then, a wealth of variant models and 

solution approaches has been proposed for to obtain optimal and approximate solutions. 

Numerous commercial software that address various real-world VRPs are now available 

to industrial users.  

1. VRP Variants 

Beyond the basic VRP, numerous variants exist in the VRP family. These and 

their solution methods are discussed in several surveys by Solomon and Desrosiers 

(1988), Laporte (1992), Parragh, Doerner, and Hartl (2008), Eksioglu, Vural and 

Reisman (2009), Toth and Vigo (2002), as well as a 50th anniversary survey by Laporte 

(2009). A comprehensive taxonomy (Figure 3) shows how sophisticated and diverse the 

VRP literature is. 

Given the vast number of possible scenarios, vehicles, customer requirement 

characteristics and constraints, it is practical to focus on the main and relevant variants 

for the purpose of this literature review. Broad classification schemes and naming 

convention have been given by Desrochers, Lenstra, and Savelsbergh (1990), Berbeglia, 

Cordeau, Gribkovskaia, Laporte’s 3-field scheme (2007a; 2007b), Marinakis &Migdalas 

(2007), and Hosny (2010). In this thesis, we combine and adapt the schemes put forth by 

Toth and Vigo (2002) and Nagy and Salhi (2005) in Figure 4. 
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The following descriptions of the VRP variants in Figure 4 draw from Toth and 

Vigo (2002) and Nagy and Salhi (2005): 

a. Capacitated VRP (CVRP) 

The Capacitated VRP forms the simplest version of the VRP. Here, there 

exists a single depot, a set of identical vehicles with capacity constraints, and a set of 

customers who require delivery of goods from the depot. The objective is to minimize 

total cost (as a weighted function of number/length or travel time of routes), while subject 

to maximum traveling time and maximum capacity constraints on the vehicles. Each 

route must visit the origin depot, and serve each customer only once (Bodin, Golden, 

Assad, & Ball, 1983). Computationally, the CVRP is NP-hard (in the strong sense1), as it 

is a generalization of the related and well-known Traveling Salesman Problem (TSP) 

(Garey & Johnson, 1979; Mosheiov, 1994; Toth & Vigo, 2002). In the Distance 

Constrained VRP (DCVRP) variant, the capacity constraint is replaced by a maximum 

route length (or time) constraint. The objective is to minimize the total length or duration 

of the routes. 

b. VRP with Time Window (VRPTW) 

The VRP with Time Windows (VRPTW) is an extension of the CVRP in 

which capacity constraints are imposed and each customer is associated with a time 

interval called a time window. The time instants in which the vehicles leave the depot, 

                                                 

 
1 A general computational problem may have numerical parameters. A problem is said to be NP-complete 

in the strong sense if it remains NP-complete even when all of its numerical parameters are bounded by a 
polynomial in the length of the input. A problem is said to be strongly NP-hard if a strongly NP-complete 

problem has a polynomial reduction to it. Nonetheless, in combinatorial optimization, the phrase "strongly 

NP-hard" is generally reserved for problems that are not known to have a polynomial reduction to another 

strongly NP-complete problem (Gary & Johnson, 1978). 
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the travel time for each arc and service time of for each customer are given. The service 

of each customer must start and end at pre-specified time instants. In case of early arrival 

at the customer node, the vehicle generally is allowed to wait until the service may start. 

The VRPTW is NP-hard in the strong sense, since it also generalizes the CVRP, arising 

when the time interval is infinite. The so-called TSP with Time Windows (TSPTW) is the 

special case of VRPTW in which there is only one vehicle.  

c. VRP with Backhaul (VRPB) 

The VRP with Backhauls (VRPB) is an extension of the CVRP in which 

the customer set is partitioned into two subsets. The first contains linehaul customers, 

each requiring a given quantity of product to be delivered. The second contains backhaul 

customers, where a given quantity of inbound product must be picked up. A precedence 

constraint exists: whenever a route serves both types of customer, all the linehaul 

customers must be served before any backhaul customer may be served. One reason for 

this is that it may be difficult to re-arrange delivery and pickup goods on the vehicles. 

Such an assumption makes implementation easier, since accepting pickups before 

finishing all deliveries results in a fluctuating load. This may cause the vehicle to be 

overloaded during its trip (even if the total delivery and the total pickup loads are not 

above the vehicle capacity), resulting in an infeasible vehicle tour. The VRPB is NP-hard 

in the strong sense, since they generalize the basic versions of the CVRP, arising when 

the backhaul subset is null. The case of VRPB in which time windows are present is 

called the VRP with Backhauls and Time Windows (VRPBTW) (Toth & Vigo, 2002). 

d. VRP with Pickup and Delivery (VRPPD) 

In the basic version of the VRP with Pickup and Delivery (VRPPD), each 

customer is associated with two quantities representing the demands of homogeneous 

commodities to be delivered and picked up at each customer. The main difference 

between VRPPD and the VRP is that customers may receive or send goods, while in the 

VRP all customers just receive goods from a depot (Nagy & Wassan, 2010). The VRPPD 

differs from the VRPB where the former involves transporting goods between any pickup 
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and delivery locations while the latter sees goods being transported from a depot to 

linehaul customers and from backhaul customers to a depot. (Parragh, Doerner, & Hartl, 

2008). In the basic version, it is assumed that, at each customer location, delivery is 

performed before pickup, i.e., there is a precedence constraint (Nagy & Salhi, 2005). 

The objective is typically to minimize the total travelling distance or time 

cost while meeting customer demands. Other than the main constraint on vehicle 

capacity, others such as maximum distance or time windows may be present. Other 

variants of the VRPPD have also been introduced depending on, e.g., whether the 

origin/destination of the commodity is the depot or some customer location, whether one 

or multiple commodities are transferred, whether origins and destinations are paired, and 

whether people or goods are transported (Hosny, 2010). 

The VRPPD is NP-hard, being a generalization of the classical VRP. The 

so-called TSP with Pickup and Delivery (TSPPD) is the special case of VRPSPD in 

which there is only one vehicle (Mosheiov, 1994). The case of VRPPD in which time 

windows are present has been studied in the literature and is called the VRP with Pickup 

and Deliveries and Time Windows (VRPPDTW) (Toth & Vigo, 2002). 

Although the VRPPD is closely related to the OB-VRP, it has received 

considerably much less academic attention compared to the classical VRP and its main 

variants. While thousands of papers have been published for the latter, e.g., survey papers 

by Solomon and Desrosiers (1988), Laporte (1992), Eksioglu, Vural & Reisman (2009), 

Toth and Vigo (2002) and the survey paper in the 50th anniversary of the VRP by 

Laporte (2009), research on VRPPD is relatively scant (Savelsbergh & Sol, 1995). One 

contributing factor is the complexity of such problems and the difficulty in handling the 

underlying constraints.   

Two key VRPPD models may be distinguished, briefly outlined below 

(Nagy & Salhi, 2005). 
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(1) VRP with Simultaneous Pickup and Delivery (VRPSPD) 

The VRP with Simultaneous Pick-up and Delivery (VRPSPD) 

represents the case when no precedence constraints are imposed on the order in which the 

pickup and delivery must be performed (Bianchessi & Righini, 2007). Customers require 

not only the delivery of goods but also the simultaneous pick up of goods from them. A 

general assumption is that all delivered goods originate from the depot and all pickup 

goods must be transported back to the depot. Min (1989) first introduced this variant to 

solve a distribution problem of a public library, with the objective of minimizing the total 

travel distance/ time of the route by considering the vehicle capacity as the problem 

constraint. 

(2) VRP with Mixed Pickup and Delivery (VRPMPD) 

The VRP with mixed Pickup and Delivery represents the case 

where linehauls and backhauls can occur in any sequence on a vehicle route (Wade & 

Salhi, 2002). The VRPMDP can be considered the special case of the VRPSDP where 

either the delivery demand or the pick-up demand of each customer equals zero. Even 

though the VRPMDP is closely related to the VRPSDP, none of the solution approaches 

towards the VRPMDP can be applied directly for the strict VRPSDP, although some 

basic ideas can be transferred (Dethloff, 2001).  

2. Relationships Between VRP Variants and Implications 

The following relationships between VRP variants and their implications can be 

observed:  

• Since the VRP is a generalization of the TSP, the relaxations and 
heuristics for the TSP are generally valid for the CVRP as well (Toth & 
Vigo, 2002);  

• VRPSPD is a generalization of the VRPMPD (Nagy & Salhi, 2004). Thus, 
mixed and simultaneous VRPPD problems can generally be modelled 
using the same framework. Mixed problems can be thought of as 
simultaneous cases with either the pickup or the delivery load being zero; 
while the customers of simultaneous problems can be divided into pickup 



 21 

and delivery entities to give a mixed formulation (Nagy & Salhi, 2005); 
and 

• If all deliveries must be made before any pickups, the VRPMPD is 
reduced to the VRPB (Chen & Wu, 2006). 

C. GENERAL SOLUTION APPROACHES 

Three broad classes of solution approaches exist for solving CO problems such as 

VRPs: exact, heuristic and metaheuristic methods. In the literature, Laporte and Nobert 

(1987) presented an extensive survey that was entirely devoted to exact methods for the 

VRP, where they gave a complete and detailed analysis of the state-of-the-art up to the 

late 1980s. Other surveys also cover exact methods, but are often more devoted to 

heuristic and metaheuristic methods, including those by Christofides, Mingozzi, and Toth 

(1979), Magnanti (1981), Bodin et al. (1983), Christofides (1985), Laporte (1992), Fisher 

(1995), Toth and Vigo (1998), and Golden et al. (1998). Bibliographies were presented 

by Laporte and Osman (1995) and Laporte (1997), while books include those by Golden 

and Assad (1988) and Toth and Vigo (2002). Drawing from Hosney (2010) and Toth and 

Vigo (2002), this section will describe how the three broad classes and their main sub-

classes work, as well as their intrinsic strengths and limitations. 

1. Exact Methods 

Until the late 1980s, the most effective exact approaches were inherited from the 

more extensive and successful work done for the exact solutions of the TSP, and have 

been further improved in recent years (Baldacci, Hadjiconstantinou, & Mingozzi, 2003). 

Exact methods will always identify an optimum solution for combinatorial optimization 

problems or VRPs, as long as a feasible solution exists and sufficient computational time 

is available. In general, the profitable exact algorithms trim down the solution space and 

number of different alternatives that need to be inspected in order to arrive at the 

optimum solution. The main exact algorithms that have been applied to solving CO/VRP 

problems are as described below. 
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a. Branch-and-Bound 

First proposed by Laporte, Mercure, and Nobert (1987) to solve a basic 

Transportation Problem based on an Asymmetric VRP (AVRP), the Branch-and-Bound 

(B&B) algorithm is based on a systematic search of all possible solutions, discarding a 

large number of fruitless candidate solutions, i.e., “pruning,” using a depth-first strategy. 

The decision to reject a candidate is based on estimating upper and lower bounds of the 

quantity to be optimized, such that nodes whose objective function values are lower or 

higher than the current best are not investigated further. In the “branching” step, a given 

set of candidates is split into two smaller sets, while the “bounding” step computes upper 

and lower bounds for the function to be optimized within a given subset. The search 

terminates when all nodes of the search tree are either pruned or solved (Hosny, 2010).  

The bounds are computed based on combinatorial relaxations of the 

constraints, e.g., spanning trees (Christofides, Mingozzi & Toth, 1981). Traditional basic 

relaxations are however generally unable to reach a solution quality sufficient for 

moderately-sized problems with 50 to 100 nodes (Toth & Vigo, 2002). More 

sophisticated and advanced bounds such as those based on Lagrangian relaxations have 

managed to increase the solvable problem size (Fisher, 1994; Toth & Vigo, 1997). The 

branch-and-bound method continues to be used widely in recent decades to solve the 

VRP and its chief variants. For many basic VRP variants, these algorithms still represent 

the state-of-the-art exact approaches available (Toth & Vigo, 2002). 

b. Branch-and-Cut 

Branch-and-Cut (B&C) is a B&B technique with an additional cutting 

step. This method has been very successful in finding optimal solutions of large instances 

of the closely related Symmetric TSP (STSP), as well as Prize Collected TSP (PCTSP) 

(Bérubé, Gendreau, & Potvin, 2009). 

The concept is to decrease the search space of feasible candidates by 

adding new constraints (“cuts”). Adding the cutting step can improve the value returned 

in the “bounding” step, and allow solving of sub-problems without branching (Hosny, 
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2010). The cuts are based on linear relaxation of the constraint that variables have to be 

integers. If an optimal solution is not reached, the “branching” process decomposes the 

problem into two new problems, for example, by adding upper and lower bounds to a 

variable whose current value is fractional, as is done in branch-and-bound. Each new 

problem is then solved recursively using the same technique, where the optimal solution 

to the original problem will be the best of these two solutions. Such an amalgation of 

enumeration with cutting plane forms the core of the B&C method (Toth & Vigo, 2002).  

Although the B&C method has been generally successful in solving many 

CO problems (Caprara & Fischetti, 1997), it may yield poor results if some of its 

components are weak, e.g., when (a) lack of a good algorithm to perform the cutting, (b) 

the number of iterations of the cutting plane phase is too high, (c) the linear program 

becomes unsolvable because of its size, or (d) the tree generated by the branching phase 

becomes too large and termination becomes unlikely within a reasonable time period. 

The most serious is problem (d) which can only be solved by strengthening the linear 

relaxation, i.e., adding linear inequalities that are satisfied by all solutions. Identifying 

such inequalities is non-trivial and requires a polyhedral study (Nemhauser & Wolsey, 

1988) of the problem (Toth & Vigo, 2002). For a more extensive and in-depth 

explanation of the B&C technique, the reader is referred to Padberg and Rinaldi (1991), 

Thienel (1995), Jünger, Reinelt, and Thienel (1995), Caprara and Fischetti (1997), Jünger 

and Thienel (1998), and Toth and Vigo (2002). 

c. Set-Covering-Based Algorithms 

Set-Covering-Based (SCB) algorithms were first suggested by Balinski 

and Quandt (1964), for solving the CVRP based on a Set-Partitioning Problem (SPP) 

formulation of the VRP. Such a model has an exponential number of binary variables, 

each associated with a different feasible route. The SPP seeks to identify a set of routes 

with minimum cost, which serves each customer once and, possibly, satisfies additional 

restrictions.  
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The main advantage of this type method is that it allows for extremely 

general route costs, e.g., depending on the whole sequence of the arcs and on the vehicle 

type. Moreover, the additional side constraints need not take into account conditions on 

the feasibility of a single route. Hence, they can often be substituted by a compact set of 

inequalities, yielding a formulation whose linear programming relaxation is typically 

much tighter than that in other exact methods, i.e., linear relaxation of the SPP provides 

an optimal solution value very close to the optimal integer. Desrochers, Desrosiers, and 

Solomon (1992) reported an average relative gap between the optimal solution value to 

the linear relaxation and the optimal integer solution value of only 0.733% in the 

VRPTW case. Average-case gap analysis show that asymptotically, the gap tends to zero 

as the number of customers increase. Worst-case analyses for the related Bin Packing 

Problem (BPP), which can be viewed as a CVRP where all the customers are at the same 

location at a fixed (nonzero) distance from the depot performed found that lower bound is 

at least 75% of the value of the optimal integer solution (Chan, Simchi-Levi, & Bramel, 

1995). 

However, one of the main drawbacks is that even in loosely-constrained 

instances with tens of customers, billions of variables need to be managed. The explicit 

generation of all feasible routes (columns) is thus normally impractical, and one has to 

turn to a column generation approach to solve the linear programming relaxation of the 

model (Toth & Vigo, 2002). This was applied to a multiple-depot VRP by Ribeiro & 

Soumis (1994). Nonetheless, stabilized column generation is by itself an NP-hard 

challenge, and efficient approaches often rely on strong primal and dual components (du 

Merle, Villeneuve, Desrosiers, & Hansen, 1999). For a comprehensive description of the 

Set-Covering-Based method, the reader is referred to Agarwal, Mathur, and Salkin (1989) 

and more recent work by Hadjiconstantinou, Christofides, and Mingozzi (1995). 

2. Classical Heuristics 

Classical heuristics were mostly developed from the 1960s to 1990s, and can be 

broadly categorized into three classes: constructive heuristics that gradually build a 

feasible solution while tracking solution cost, two-phase heuristics that decompose the 
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VRP into its two natural components (clustering of nodes into feasible routes versus 

actual route construction), with possible feedback loops between the two stages, and 

improvement heuristics that upgrade feasible solutions by performing a sequence of arc 

or node exchanges within or between vehicle routes. The distinction between constructive 

and improvements methods however, is often blurred since most constructive algorithms 

incorporate improvements steps at some stage (Toth & Vigo, 2002). These classes will be 

briefly described below. In-depth overviews are provided by Nagy and Salhi (2005), 

Thangiah, Potvin and Sun (1996), Christofides (1985), Christofides, Mingozzi, and Toth 

(1979), and Bodin, Golden, Assad and Ball (1983). 

a. Constructive Methods 

The two main techniques to construct VRP solutions are savings and 

insertion heuristics. Savings heuristics merge existing routes using a savings criterion, 

whereas insertion heuristics gradually assign nodes to vehicle routes using an insertion 

cost.  

(1) Savings-Based Algorithms 

One of the most widely known VRP heuristics, Clarke and 

Wright’s (1964) algorithm is based on the notion of savings. For the single-depot VRP, it 

begins with an initial allocation of one vehicle to each customer. It then uses a single 

vehicle to serve two customers on a single trip and computes the savings in total distance 

travelled. The larger the savings, the more desirable it becomes to combine the two nodes 

in a single tour. The savings are ranked and the node-pair is included into a route, so long 

as the resultant tour doe not violate any other constraints. Because of its simple 

manipulation of data, the Clarke-Wright algorithm runs very efficiently and can be 

applied to large problems. In addition, because nodes are added to routes one or two at a 

time, it is possible to check whether each addition violates any constraints, even when 

they are fairly complicated, e.g., a combination of maximum capacity, distance, time, and 

number of nodes that any vehicle can visit.  
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However, the solution generated by such a simple algorithm is not 

guaranteed to be close to the optimum. While experience has shown that the algorithm 

performs quite well most of the time, it is possible for pathological cases to yield very 

poor solutions (Toth & Vigo, 2002). To address this, Yellow (1970) proposed a more 

generalized savings which incorporates a route shape parameter. Other proposed 

enhancements compute matching-based savings based on TSP solution lengths of the two 

routes, using the savings values as matching weights, and merging the routes 

corresponding to optimal matchings, provided feasibility is maintained (Desrochers & 

Verhoog, 1989). In general, a matching-based algorithm yields better results than the 

classical Clarke and Wright method, but at the price of much longer computation time 

(Toth & Vigo, 2002). The memory requirements for sorting and ranking the savings list 

can also be very high for large problem sets, although this can be addressed via efficient 

heaping algorithms (Golden, Magnati & Nguyen, 1977; Nelson, Nygard, Griffin, & 

Shreve, 1985). 

(2) Sequential-Insertion Heuristics 

Fundamentally, a sequential insertion heuristic inserts an unrouted 

customer between two adjacent served nodes in a partially-finished route between depot 

and destination. In Solomon’s (1987) seminal work, he categorized VRP tour-building 

algorithms into sequential versus parallel methods. The former constructs one route at a 

time until all customers are scheduled, whereas the latter simultaneously constructs 

routes, with the number of parallel routes either unconstrained, or constrained to a pre-

specified number. When finding an initial solution, the initialization criterion finds the 

first customer (the seed customer) to insert into a route. A commonly-used initialization 

criterion is the farthest unrouted customer, and the customer with the earliest deadline. 

Once the seed customer has been identified and inserted, the algorithm considers, for the 

unrouted nodes, the insertion place that minimizes a weighted average of the additional 

distance and time needed to include a customer in the current partially constructed route, 

a step known as determining the insertion criteria. In the final step, the selection criteria 

tries to maximize the benefit obtained from inserting a customer in the current partial 
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route rather than on a new direct route. If all remaining unrouted customers have no 

feasible insertion place, then a new route is initialized (Joubert & Claasen, 2006). 

A shortcoming of Solomon’s method is that it considers all 

unrouted nodes when calculating the insertion and selection criteria for each iteration, 

rendering the method computationally expensive. Nevertheless, with enhancements, they 

can become computationally efficient and operate in real-time, such that many of the 

commercial routing and scheduling software packages use insertion-based heuristics 

(Palmer, Dessouky, & Abdelmaguid, 2004). Furthermore, they are often the preferred 

method for generating an initial solution for improvement heuristics or meta-heuristics 

(Lu, 2005). 

b. Two-phased Methods 

Two-phase heuristics are divided into two classes: cluster-first, route-

second methods and route-first, cluster-second methods. In the first case, nodes are first 

organized into feasible clusters, and a vehicle route is constructed for each of them. In the 

second case, a tour is first built on all nodes and is then segmented into feasible vehicle 

routes (Toth & Vigo, 2002). 

(1) Cluster-First-Route-Second 

Two-phase methods include the Sweep heuristic (Gillet & Miller, 

1974; Wren & Holiday, 1971), the Generalized Assignment heuristic (Fisher & Jaikumar, 

1981), and the Petal heuristic (Balinski & Quandt, 1964). The sweep algorithm applies to 

planar instances of the VRP. Feasible clusters are initially formed by rotating a ray 

centered at the depot. A vehicle route is then obtained for each cluster by solving a TSP. 

Some implementations include a post-optimization phase in which nodes are exchanged 

between adjacent clusters, and routes are re-optimized (Toth & Vigo, 2002). Fisher and 

Jaikumar’s algorithm solves a Generalized Assignment Problem (GAP), rather than use a 

geometric method to form the clusters. It involves selecting seed nodes to initialize each 

cluster, allocating the customers to seeds by computing the cost of allocating each 

customer to each cluster, solving a GAP and solving a TSP for each cluster 
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corresponding to the GAP solution. The Petal algorithm, first proposed by Balinski and 

Quandt (1964) as a natural extension of the Sweep algorithm, constructs a subset of 

feasible routes, called petals, and make a final selection by solving a set partitioning 

problem. However, it becomes impractical when the number of nodes is large. Agarwal, 

Mathur, and Salkin (1989) used column generation to solve small instances of the VRP 

optimally with number of nodes ranging from 10 to 25. 

(2) Route-First, Cluster-Second Methods 

First applied by Beasley (1983) to the VRP, route-first, cluster-

second methods construct in a first phase a giant TSP tour for all customers, disregarding 

constraints. In the second phase, an arbitrary orientation of the TSP tour is chosen and the 

tour is partitioned into feasible vehicle routes according to capacity constraints. The 

process is repeated for several orientations and the best is chosen. Haimovich and 

Rinnooy Kan (1985) showed that if all customers have unit demand, this algorithm is 

asymptotically optimal, although this is seldom true in the real world. Little literature 

compares the computational efficiency of the route-first-cluster-second algorithm against 

other methods. 

c. Improvement Heuristics 

Improvement heuristics can either operate on each vehicle route taken on 

their own or on multiple routes at the same time (Toth & Vigo, 2002). In the single-route 

case, any improvement heuristic for the TSP can be applied. Most improvement 

procedures for the TSP can be described in terms of Lin’s (1965) λ-opt mechanism, 

where λ arcs are deleted from the tour, and the remaining segments are reconnected in all 

possible permutations. If any profitable reconnection is found, it is implemented. The 

procedure stops at a local minimum when no further improvements are identified. In the 

multi-route case, procedures that exploit the multi-route structure of the VRP are 

developed to exchange arcs (Thompson & Psaraftis, 1993; Van Breedam 1994). 

Thompson and Psaraftis (1993) described a general b-cyclic, k-transfer scheme in which 

a circular permutation of b routes is considered and k customers from each route are 
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shifted to the next route of the cyclic permutation. The authors showed that applying 

specific sequences of cyclic-transfer exchanges (with b = 2 or b variable, and k = 1 or 2) 

yields positive results. Van Breedam’s improvement operations based on string cross, 

string exchange, string relocation, and string mix, can be viewed as special cases of 2-

cyclic exchanges. He concluded that the string exchange yields the best overall 

improvement, albeit taking longer computational effort. 

3. Metaheuristics 

Metaheuristics are a recent class of approximate methods designed to solve hard 

CO problems arising in various different areas (Reeves, 1993). A metaheuristic 

iteratively guides a subordinate heuristic while performing a deep exploration of the most 

promising regions of the solution space. These methods typically combine sophisticated 

neighborhood search rules, memory structures, learning strategies and recombinations of 

solutions in order to efficiently find near-optimal solutions. Metaheuristics thus not only 

have the ability to continue the search beyond a local optimum where a heuristic would 

normally become trapped, but also be flexibly adapted to solve other optimization 

problems (Osman & Kelly, 1996; Toth & Vigo, 2002). Furthermore, although integer 

programming is commonly used to solve exactly most combinatorial problems, 

metaheuristics exploit the combinatorial nature of a problem rather than its integer 

programming formulation (Gendreau & Potvin 2005). 

For overviews and more detailed treatment on metaheuristics, the reader is 

referred to Osman (1995), Osman & Kelly (1996), Aarts and Lenstra (1996), and Laporte 

& Osman (1996), Gendreau & Potvin (2005), Dreo, Petrowski, Siarry, & Taillard (2003), 

Glover & Kochenberger (2003). From a classification perspective, Gendreau & Potvin 

(2005) divided metaheuristics into two categories: single-solution metaheuristics, where a 

single solution (and search trajectory) is considered one at a time, and population 

metaheuristics, where multiple solutions evolve concurrently. Drawing from Gendreau & 

Potvin (2005), the next two sections will describe the metaheuristics under the two 

categories in detail. Nonetheless, an alternative classification can also be considered: 

primarily constructive metaheuristics, where a solution is built from scratch (through the 
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introduction of new elements at each iteration), and improvement metaheuristics, which 

iteratively alter a solution. Constructive metaheuristics are mainly illustrated by the 

Greedy Randomized Adaptive Search Procedure (GRASP) and Ant Colony Optimization 

(ACO) while the rest are primarily improvement metaheuristics. That said, no 

classification scheme is perfect and metaheuristics do not always fall neatly into 

prescribed categories. For example, the GRASP methodology can contain an 

improvement phase to achieve local optimality through neighborhood search. 

a. Single-solution Metaheuristics 

Single-solution metaheuristics, generally considers one single solution 

(and search trajectory) at a time. 

(1) Greedy Randomized Adaptive Search Procedure (GRASP) 

Multi-start local search methods repeatedly apply a local search 

from different initial solutions. Using a fast greedy heuristic to generate starting solutions 

thus becomes desirable if the greedy solutions are sufficiently different to have a good 

sampling of local optima. In the 1980s, semi-greedy or randomized greedy heuristics 

(Feo & Resende, 1989) were proposed that added variability to greedy heuristics, leading 

to the search scheme known as GRASP (Gendreau & Potvin, 2005). A GRASP combines 

a greedy heuristic with randomization. Whenever the heuristic selects the next delivery to 

be inserted, it randomly picks from a pre-specified number of best choices. At each step 

of the construction heuristic, the elements not yet incorporated into the partial solution 

are evaluated with a greedy function, and the best elements are kept in a Restricted 

Candidate List (RCL). One element is then randomly chosen from this list and 

incorporated into the solution. This allows the algorithm to make choices that do not 

seem to be the best at the time but may provide better opportunities later. The heuristic is 

then executed multiple times and the best overall option is returned at the end (Toth & 

Vigo, 2002). Surveys on GRASP are provided in Festa and Resende (2002), and Resende 

and Ribeiro (2003). 
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The main shortcoming is that each restart is independent of 

previous ones, preventing exploitation of previously-obtained solutions to guide the 

search. Recent developments such as reactive GRASP (Prais & Ribeiro, 2000) address 

this by dynamically adjusting the size of the RCL based on the quality of recently-

generated solutions. 

 (2) Simulated Annealing (SA) 

Simulated Annealing (SA), first proposed by Kirkpatrick, Gelatt, 

and Vecchi (1983), has been applied to several types of discrete CO problems (Golden & 

Skiscim, 1986). It is a randomized local search procedure where a modification to the 

current solution leading to an increase in solution cost can be accepted with some 

probability. This algorithm is inspired by annealing of solids, where the energy of the 

system is minimized using slow cooling until the atoms reach a stable state. Slow cooling 

allows metal atoms to align and form a regular crystalline structure that has high density 

and low energy. In a CO context, the ground state of a material corresponds to the 

minimum energy configuration of its atoms, while the minimum energy configuration of 

a material corresponds to the minimum value of the objective function. At each iteration, 

the current solution is modified by randomly selecting a move from a particular class to 

some predefined cooling schedule, and a certain number of iterations are performed at 

each temperature level. SA accepts with certain probability feasible solutions which also 

increase the value of the objective function. Ideally, this acceptance probability should be 

close to one at a high temperature at the beginning of the cooling, and decreases to near-

zero at a temperature close to zero near the end of the cooling. This prevents the SA 

algorithm from being trapped in a local minimum. In fact, unlike most metaheuristics, the 

SA method asymptotically converges to a global optimum (Aarts & Ten Eikelder, 2002; 

Henderson, Jacobson, & Johnson, 2003).  

A critical issue of SA is determining an ideal annealing or cooling 

schedule. If the cooling rate is too fast, it would preclude the occurrence of the optimal 

solution. Recent advances from the basic SA have focused on using of different forms of 

static and dynamic cooling schedules with the intent to boost convergence speed without 
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losing solution quality, and deterministic variants with threshold acceptance where a 

transition is accepted if it does not increase the cost by more than some predefined value; 

this value is progressively reduced as the algorithm unfolds (Dueck & Scheuer, 1990), 

and thermostatistical persistency, where different parts of the solution are locked as the 

search continues, due to frequent occurrences in previously-generated solutions 

(Chardaire, Lutton, & Sutter, 1995). 

Overall, SA appeals to optimization problems in which obtaining a 

good solution, within a reasonable computational time, is preferred to an optimal solution 

with considerably longer solution time. Implementation is easy as it just requires a 

method for generating a move in the neighbourhood of the current solution, and an 

appropriate annealing schedule. It can also be used to tackle a wide range of CO 

problems, so long as an appropriate neighbourhood structure has been devised. Finally, 

high-quality solutions can be obtained, if a suitable neighbourhood structure and 

annealing schedule are picked (Hosny, 2010). 

(3) Tabu Search (TS) 

The principles of the TS method originates from the work of 

Glover (1986). TS, like SA, allows for intelligent exploration of the search space in an 

attempt to escape the trap of local optima. Nevertheless, there are three main differences 

between TS and SA (Hosny, 2010). Firstly, unlike SA, TS only accepts moves within the 

vicinity of the current solution that improve the objective function. Secondly, TS always 

searches for the best solution in the current neighborhood before applying the 

replacement criterion. Thirdly, the most distinguishing feature of TS is the use of a short 

term memory called a tabu list, in which recently visited solutions (or attributes of 

recently visited solutions) are stored to avoid short-term cycling where the search may be 

trapped within the boundaries of a certain neighbourhood region, oscillating among 

solutions that have been previously visited. Moves in the tabu list are prohibited and 

cannot be visited again for a certain number of iterations. In doing so, the algorithm is 

forced to explore new areas of the search space in order to escape local optima. 
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Typically, the search stops after a fixed number of iterations or a maximum number of 

consecutive iterations without any improvement to the incumbent (best known) solution.  

Detailed overviews of TS can be found in Gendreau (2002; 2003), 

Glover (1989, 1990). Recent refinements to the basic algorithm introduce intensification 

mechanisms to enhance the search around good solutions, and diversification 

mechanisms to force the algorithm to explore new search areas. These are typically 

implemented via different forms of long-term memories (Glover & Laguna, 1997). Other 

developments include adaptive memories to both diversify and intensify the search, by 

taking different fragments of previously generated elite solutions and combining them to 

generate a new starting solution, similar to many population metaheuristics (Rochat & 

Taillard, 1995). Adaptive memories provide a generic framework for guiding local search 

and can be integrated with different types of metaheuristics. In Strategic Oscillation (SO) 

(Glover & Laguna, 1997), an oscillation boundary (usually, a feasibility boundary) is 

defined. The search is then allowed to go for a specified depth beyond the boundary 

before turning around. When the boundary is crossed again from the opposite direction, 

the search goes beyond it for a specified depth before turning around again. Repeating 

this procedure yields an oscillatory search pattern, whose amplitude can be tuned, e.g., 

tight oscillations favor a more thorough search around the boundary. 

The reactive TS (Battiti & Tecchiolli, 1994) dynamically adjusts 

the search parameters based on the search history, where the size of tabu list is 

automatically changed when certain configurations occur too frequently to avoid short-

term cycles. Wassan, Nagy, and Ahmadi (2008) controls the tabu tenure dynamically, and 

find initial solutions using a modification of the sweep algorithm. Nonetheless, the more 

recent implementations of TS are often cumbersome as a result of including multiple 

additional components that require many well-chosen parameters. Unified TS (Cordeau, 

Laporte, & Mercier, 2001) was a positive attempt to produce simpler, more flexible TS 

code with dynamic adjustment of (a few) parameters. 
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a. Population Metaheuristics 

Population metaheuristics explicitly works with a population of solutions 

(rather than a single solution), by combining different solutions, implicitly or explicitly, 

in order to generate new solutions. 

(1)  Genetic Algorithms (GAs) 

The idea of simulation of biological evolution and the natural 

selection of organisms dates back to the 1950s by early pioneers such as Alex Fraser 

(Fraser, 1957a; Fraser, 1957b). Nevertheless, the theoretical foundation of Genetic 

Algorithms (GAs) was established by Holland (1975). GAs are fundamentally inspired by 

how species evolve and adapt to their environment based on Darwin’s theory of natural 

selection. In traditional GAs, each individual is usually represented by a string of bits 

analogous to chromosomes and genes, i.e., the parameters of the problem are the genes 

that are joined together in a solution chromosome. A fitness value is assigned to each 

individual in order to judge its ability to survive and breed (Hosny, 2010). A population 

of solutions from one generation generates the next generation of solutions through the 

application of operators that mimic those found in nature, i.e., selection of the fittest, 

crossover and mutation (Gendreau, 2005). By selecting the “fittest” parents, favorable 

characteristics spread throughout the population over several generations, and the most 

promising portions of the search space are tested. The population converges to an optimal 

or near optimal solution, such that the population evolves toward increasing uniformity, 

while its average fitness asymptotically approaches the highest possible fitness.  

During the reproduction phase, a mating operator called crossover, 

combines the most desirable features from two selected parent solutions to create one or 

two offspring solutions. Not all selected pairs undergo crossover. A random choice is 

applied, with the likelihood of crossover assigned a given probability. If crossover is not 

performed, offspring merely duplicate their parents. This is repeated until a new 

population of offspring solutions is generated. Before replacing the old population, each 

member of the new population is subjected (with a small probability) to minute random 

perturbations via the mutation operator. Therefore, crossover allows a rapid exploration 
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of the search space by producing large jumps, while mutation allows a small amount of 

random search. Starting from a randomly or heuristically generated initial population, this 

renewal cycle is repeated for a pre-specified number of iterations, and the best solution 

found is returned at the end. Detailed overviews of GA are provided in Beasley (2002), 

Michalewicz (1996), and Potvin (1996). 

Fundamentally, a genetic algorithm is a randomized global search 

technique (Toth & Vigo, 2002). A pure GA uses little heuristic information about the 

problem domain, and hence can be applied to a wide range of ill-defined problems that do 

not lend themselves to specialized methods. It is noted that GA’s success has often been 

achieved by departing from the traditional algorithm, e.g., the encoding of solutions into 

chromosomes is often either completely avoided (by working directly on the solutions) or 

specifically designed for specialized crossover and mutation operators. The distinctive 

feature of GAs remains the exploitation of a population of solutions and the creation of 

new solutions through the recombination of good attributes of two parent solutions. Many 

single-solution metaheuristics now integrate this feature, e.g., via adaptive memories 

(Reeves & Yamada, 1998)). Modern hybrid GAs further incorporate powerful local 

search operators as a form of mutation in order to address the situation where the 

population improves on average, but fails to generate near-optimal solutions. Rather than 

introduce small random perturbations into the offspring solution, a local search is applied 

to improve the solution until a local optimum is reached (Land, 1998; Moscato, 2002).  

Overall, GAs are relatively adaptable, and can be easily hybridized 

to generate knowledge-augmented GAs. GAs can quickly reach fit individuals who are 

usually good enough as solutions to problems of a large magnitude. The main difficulty 

lies in designing an appropriate crossover operator, as combining two solutions rather 

than one is significantly more complex than developing a mutation operator or a simple 

neighbourhood move. This usually makes GAs implementation more difficult compared 

to more simple metaheuristics such as SA. 
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(2) Ant Colony Optimization (ACO)  

ACO is based on how real ant colonies behave in order to find the 

shortest path between their nest and food sources (Çatay, 2006). Ants deposit pheromone 

on the routes they walk while seeking food. If other ants sense the pheromone, they are 

likely to follow that route rather than travel at random, thus reinforcing the route. As an 

increasing number of ants follow a particular route, the amount of pheromone on that 

route will increase, raising its selection probability by other ants. However, the 

pheromone evaporates over time, decreasing the probability of other ants following the 

route. The longer the route between the nest and the food source, the more the pheromone 

evaporates. Thus, the pheromone levels remain higher on the shorter paths. As a 

consequence, the level of pheromone laid is essentially based on the path length and the 

quality of the food source. In time, all ants are expected to follow the shortest path.  

ACO simulates the natural behavior of real ants to solve CO 

problems by using artificial ants (Çatay, 2009). To apply ACO, the optimization problem 

is transformed into the problem of finding the best path on a weighted graph. The 

artificial ants incrementally build solutions by moving on the graph using a stochastic 

construction process guided by artificial pheromone and a type of greedy heuristic 

information known as “visibility” (Dorigo, 2008). The amount of pheromone deposited 

on arcs is proportional to the quality of the solution generated and increases at run-time 

during the computation. Each time an element is selected by an ant, its pheromone level 

is updated by first removing a fraction of it, to mimic pheromone evaporation, and then 

by adding some new pheromone. When all ants have constructed a complete solution, the 

procedure is restarted with the updated pheromone levels. This is repeated for a fixed 

number of cycles or until search stagnation occurs. 

While the basic Ant System (AS) solves small to moderate TSPs 

with comparable accuracy as other general-purpose heuristic approaches, e.g., genetic 

algorithms and simulated annealing, the simple ant algorithm is outrivaled by state-of-

the-art specialized TSP algorithms for larger problems (Dorigo, Maniezzo, & Colorni, 

1996). The insufficient optimization is due to (1) the best solution found can be lost by 
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virtue of the probabilistic nature of route selection, (2) convergence is not guaranteed due 

to the uniform contributions of both the best and worst solutions to the pheromone 

updates, and (3) the collective memory of the colony stores unpromising variants, 

resulting in a considerable extension of the search area in larger problems (Shtovba, 

2005) 

Nevertheless, the original AS framework described in Dorigo 

(1992) provides inspiration for a number of enhancements that significantly improve 

performance. These extensions differ from the AS mainly in the way the pheromone 

update is performed and the pheromone trails are managed. Most are direct extensions of 

AS in the sense that they retain identical solution construction and pheromone 

evaporation procedures. They generally strongly exploit the best solutions found during 

the search and the most successful ones integrate explicit features to avoid premature 

stagnation of the search (Dorigo & Stutzle, 2004). The main differences between the 

various AS extensions lies in the techniques used to intensify or diversify the search 

process.  

Some of the more prominent extensions include the Elite AS 

(EAS), rank-based AS, and Max-Min AS (MMAS). The idea of the EAS, first introduced 

in Dorigo (1992) and Dorigo, Maniezzo, and Colorni (1996), is to offer strong additional 

reinforcement to the arcs belonging to the best routes found since the start of the search. 

To circumvent slow convergence in the neighborhood of an optimum, elite ants deposit 

pheromones only on arcs of the best route found in order to attract more ants. The elitism 

ideas are further developed in rank-based AS (Bullnheimer, Hartl, & Strauss, 1999b) and 

MMAS (Stutzle & Hoos, 1997; 2000). In the rank-based AS, solutions found at each 

iteration are ranked such that bad routes are not retained. The pheromone amount 

deposited by an ant decreases with its rank; only the best (w-1) ants and one elite ant 

deposit pheromones. This can be visualized as w ants moving along the best route, (w – 

1) ants moving along the best current route, (w – 2) ants moving along the second-best 

(by rank) route, etc. As such, the pheromone values on arcs of two routes of almost equal 

length can differ substantially, by at least 100/(w – 1)%. Therefore, in the neighborhood 

of the optimum, when the route lengths are almost the same, the ranking leads to a 



 38 

significant speed-up in searching for the best solution (Dorigo & Stutzle, 2004). As in the 

EAS, the best-so-far ant always deposits the largest amount of pheromone in each 

iteration to boost the probabilities of selecting the best route fragments.  

In the MMAS, four main modifications are introduced vis-a-vis the 

AS. Firstly, it strongly exploits the best routes identified where only either the iteration-

best ant, or the best-so-far ant is allowed to deposit pheromone. Unfortunately, such a 

strategy may run into stagnation where all the ants follow the same route, due to 

excessive growth of pheromone trails on arcs of a good, albeit suboptimal, route. To 

counteract this outcome, a second MMAS modification confines the pheromone trail 

values to an upper and lower bound. Thirdly, the pheromone trails are universally 

initialized to the upper pheromone trail bound, which, in conjunction with a small 

pheromone evaporation rate, widens the exploration of routes at the beginning of the 

search. Lastly, pheromone trails are reset each time the system approaches stagnation or 

when no improved tour has been generated for a certain number of consecutive iterations. 

(Dorigo & Stutzle, 2004) 

The ACO algorithms described thus far achieved significantly 

better performance than the basic AS by introducing minor changes in the overall AS 

algorithmic structure. Some ACO algorithms that more extensively modify the features of 

AS and introduce new mechanisms based on ideas not found in the original AS have been 

proposed in literature. The Ant Colony System (ACS) (Dorigo & Gambardella, 1997) 

differs from the AS in three main areas. Firstly, it more strongly exploits the accumulated 

search experience through the use of a more aggressive action choice rule. Secondly, as 

in the EAS, pheromone evaporation and pheromone deposit occurs only on the arcs 

belonging to the best-so-far route, forcing the ants to search for an optimum in a narrow 

neighborhood of the previous best solution. Lastly, each time an ant uses an arc to move 

from node to node, it “eats” away some pheromone from that arc, reducing its 

attractiveness to other ants, to increase exploration of alternative routes. The solutions 

thus become more diverse owing to the dynamic update of the pheromone distribution 

(Dorigo & Stutzle, 2004; Shtovba, 2005).   
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The ACS was also the first ACO algorithm to use Restricted 

Candidate Lists (RCL), where a small list of preferential nodes that can be reached by an 

ant from a given node. The RCL contains a limited number of the best-rated nodes 

according to some heuristic criterion, e.g., increasing distances from the node an ant is 

on. Since such information is known a priori, candidate lists can be built before solving a 

problem instance and where they remain fixed during the entire solution process. An ant 

chooses a node outside the RCL only when the list has been exhausted. This allows 

exclusion of evidently unpromising variants and forces the ants to contemplate only the 

most promising routes, thus essentially reducing the search area. Experimental results 

have shown that use of candidate lists improves the solution quality and hastens the 

solution process, especially for larger problems (Gambardella & Dorigo, 1996; Dorigo & 

Stutzle, 2004). 

Other ACO variations include the Hybrid Ant System (HAS) 

(Gambardella, Taillard, & Dorigo, 1999), where the pheromone trails guide a local search 

heuristic rather than a construction heuristic, the use of Multiple Ant Colony Systems 

(MACS) which interact by exchanging information about fruitful pheromone trails 

(Gambardella, Taillard, & Agazzi, 1999) and the exploitation of more sophisticated 

greedy heuristics to construct solutions (Le Louarn, Gendreau, & Potvin, 2004). Shtvoba 

(2005), Dorigo and Gambardella (1997), Dorigo, Maniezzo, and Colorni (1996) provide 

excellent overviews of the various ACO algorithms. 

Overall, their versatility and robustness has led ACO algorithms to 

be popular in solving many types of CO problems, e.g., the TSP, the Quadratic 

Assignment Problem (QAP), and the job-shop scheduling problem (Dorigo, Maniezzo, & 

Colorni, 1996). It has also been applied to variants of VRPs (Doerner, K., Hartl, R. F., & 

Reimann, 2001). The idea of “attractiveness and “pheromone trails” are also exploited 

within other meta-heuristic techniques, e.g., in the crossover operator used in Zhao, Li, 

Sun and Mei (2008)’s genetic algorithm. 
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D. SOLUTION APPROACHES FOR RELATED VRP VARIANTS 

This section focuses on the solution approaches researchers in literature have used 

to address the VRP variants that are more closely related to the OB-VRP, namely the 

VRPB, VRPSPD and VRPMPD. In contrast to the classic VRP and its other basic 

variants, literature is relatively scant for these variants (Toth & Vigo, 2002). 

1. VRP with Backhaul (VRPB) 

Exact optimization algorithms developed by Toth and Vigo (1997) and Mingozzi, 

Giorgi and Baldacci (1999) created two different mathematical formulations of the VRPB 

and managed to solve exactly problems with up to 100 customers. Toth and Vigo (1997) 

presented an integer linear-programming model and a branch-and-bound approach that 

uses a Lagrangian lower bound strengthened by adding inequalities in a cutting plane 

fashion. Mingozzi et al. (1999) presented an algorithm based on a new integer 

formulation, computing a valid lower bound by combining different heuristics for solving 

the dual linear-programming relaxation. 

With regard to heuristics, Deif and Bodin (1984) modified the definition of the 

savings in the classical Clarke and Wright savings algorithm, while Goetschalckx and 

Jacobs-Blecha (1989) applied a space-filling-curve heuristic to obtain an initial solution, 

which was then improved by using a number of search heuristics. Goetschalckx and 

Jacobs- Blecha (1993) introduced a new heuristic based on the Generalised Assignment 

Problem for the formation of the clusters of customers that originate the routes. Halse 

(1992) adopted a cluster-first routing-second approach. In the first stage, the customers 

were assigned to vehicles, before a routing procedure based on 3-opt was performed, and 

a Lagrangean relaxation and column generation approach applied. A cluster-first route-

second type heuristic is developed in which nodes are first distributed to vehicles and 

then the problem is solved using 3-opt algorithm. Solutions to problems with up to 100 

customers for the VRPPD and 150 customers for the VRPB were reported. Toth and 

Vigo (1999) also presented a cluster-first-route-second heuristic where clusters are 

combined by solving an auxiliary assignment problem, using information provided by a 
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proposed Lagrangian relaxation. The initial routes are built through a modified TSP 

heuristic. The final set of routes is then obtained through exchanging the intra-route, 

inter-route and outer-route arcs to improve the solution quality. More recently, Wade and 

Salhi (2002) developed an insertion algorithm for a particular situation in which pick-up 

and delivery can be partially mixed, i.e., collections may start as soon as a given fraction 

of deliveries has been completed.  

With regard to metaheuristics, Duhamel, Potvin and Rousseau (1997) proposed a 

tabu search heuristic in which a greedy insertion procedure is used to obtain an initial 

solution. The initial solution is then improved through link or node exchanges. Osman 

and Wassan’s (2002) tabu search method produces better average solutions than Toth and 

Vigo’s (1999) algorithm, but requires much more computing time. They use two 

heuristics for generating the initial solutions: one that combines savings and insertion and 

another that combines savings and assignment. In their tabu method, the neighborhood is 

defined by the interchange of one or two consecutive customers between two routes. On 

the other hand, the tabu tenure is defined dynamically during the search by a reactive 

procedure. Brandão (2006) obtains a diversity of initial solutions from pseudo-lower 

bounds, an innovative feature for the VRPB. Further diversification was attained by the 

use of a random tabu tenure with consequent better results. Potvin, Duhamel and Guertin 

(1996) applied a GA to identify orderings that produce good routes and proposed a 

greedy route-construction procedure to insert customers one by one into the routes for a 

given ordering of customers. Wade and Salhi (2003) proposed an ant system algorithm 

for the mixed vehicle routing problem with backhauls. 

2. VRP with Simultaneous Pickup and Delivery (VRPSPD) 

Although a survey of the models and techniques for the VRPSPD can be found in 

Savelsbergh and Sol (1995), literature is generally lacking in contributions (Bianchessi & 

Righini, 2007). Most of the algorithms for solving the VRP-SDP are based on that of the 

classical VRP, with recent years focused on the development of heuristics and 

metaheuristics. Angelelli and Mansini (2002; 2004) solved the VRPSPDTW and 

VRPSPD using a branch-and-price strategy based on a set covering formulation. More 
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recently, Lu and Dessouky (2004) propose a branch and cut based algorithm for the 

multiple vehicle version of the VRPSPD. Dell’Amico, Righini, & Salani (2006) 

presented an optimization algorithm based on column generation, dynamic programming, 

and branch and price method. However, the computational complexity of VRPSPD is 

evident from the computational result, in which one hour of computational time 

sometimes is not enough to solve a small size problem consisting of 40 customers.  

In terms of heuristics, Casco, Golden and Wasil (1988) first examined basic 

constructive algorithms, improving on previous studies of Golden, Baker, Alfaro and 

Schaffer (1985), based on greedy insertion procedures and on the idea of savings 

introduced by Clark and Wright (1964). Min (1989) was the first to fully tackle the 

VRPSPD, solving a real-world problem faced by a public library, with one depot, two 

vehicles and 22 customers. The solution comprised three phases: clustering customer 

nodes, assigning vehicles to clusters, and creating the route of each vehicle by solving 

TSPs. The infeasible arcs were penalized (their lengths set to infinity), and the TSPs 

solved again. Mosheiov (1998) presented three greedy constructive algorithms based on 

tour partitioning to solve the problem with divisible demands, where each customer can 

be served by more than one vehicle. All three algorithms are route-first cluster-second: 

they accept as input a Hamiltonian tour (not including the depot) computed disregarding 

customer demands, and partition it into a set of subtours (Bianchessi & Righini (2007).  

Salhi and Nagy (1999) proposed four insertion heuristics based on the 

methodology proposed by Golden et al. (1985) and Casco et al. (1988). They proposed a 

load-based insertion procedure that extends the idea of 1-insertion to cluster insertion. 

The basic steps of these heuristics are constructing partial routes for a set of customers, 

and then inserting the remaining customers into the existing route. These heuristic rules 

are mainly differentiated by the criteria for insertion and the number of customers per 

insertion. They tested four insertion methods (1-insertion, 2-insertion, connected-graph-

cluster-insertion, and complete-graph-cluster-insertion) and concluded that the cluster 

insertion method offered positive improvement. The method can also be applied to the 

VRPB. Nagy and Salhi (2004) also proposed a local search heuristic with four phases and 

considered the degree of infeasibility. After finding an initial solution in the first phase, it 
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is continuously improved in each of the following phases while maintaining a certain 

feasibility condition. In both papers, they addressed not only the VRPSPD, but also the 

VRPMPD where some customers require delivery while others require pickup. They 

showed that the VRPSPD is a generalization of the VRPMPD. In addition, they also 

extended the method for the multi-depot case. Dethloff (2001) and Dethloff (2002) 

presented insertion heuristics based on the concept of residual capacities and used four 

different criteria to solve the problem. in the insertion procedures proposed by Casco et al 

(1988), Salhi and Nagy (1999), and Dethloff (2001), the routes are all constructed 

sequentially. Shin (2009) proposed a novel 2-phase heuristic which consists of a 

clustering phase using the geometrical center of a cluster, and a route establishment phase 

applying a two-way search of each feasible route. Results showed that the suggested 

algorithm can generate better initial solutions for subsequent metaheuristics than other 

methods such as the giant-tour-based partitioning method or the insertion-based method.  

In terms of metaheuristics, Bent and Henteryck (2006) proposed a simulated 

annealing approach for assigning customers to vehicles first with minimized number of 

routes and then using the Large Neighbourhood Search method to minimize the total 

travel cost. Tang and Galvao (2002) developed two local search heuristics based on 

Beasley (1983) and Gillet and Miller (1974). Tang and Galvao (2006) developed a TS 

metaheuristics which combines several techniques to obtain alternative inter-route and 

intra-route solutions, including relocation of a customer from one route to another route, 

interchanging a pair of customers between two routes, crossovering two routes, and 2-opt 

procedure. The VRPSPD was formulated to minimize the total traveled distance subject 

to maximum distance and maximum capacity constraints on the vehicles. Bianchessi and 

Righini (2007) proposed propose several kinds of heuristic algorithms for the VRPSPD 

with indivisible demands, mixed pick-ups and deliveries and both simple and composite 

demands. They compared four different tour-partitioning-based constructive algorithms, 

local search algorithms with various neighborhood structures, and TS algorithms. Their 

TS algorithm, based on complex and variable neighborhoods, combine arc-exchange-

based and node-exchange-based neighborhoods, employing different and interacting tabu 

lists.  
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Genetic algorithms (Baker, & Ayechew, 2003; Christian, 2004) have drawn 

attention due to their robustness and flexibility. Cao & Lai (2007) proposed an improved 

genetic algorithm (IGA) using NOX crossover, swapping mutation and inversion 

operator were used as improved genetic operators to overcome the shortcomings of 

premature convergence and slow convergence of conventional genetic algorithm (GA). 

Cao (2008) and Cao, Lai and Nie (2008) proposed a hybrid algorithm based on 

combining the Differential Evolution (DE) theory (Storn and Price, 1996) and GAs. 

Çatay (2006) proposed an Ant Colony Optimization (ACO) algorithm introducing a new 

visibility function, producing comparable results to those of benchmark problems in 

literature. Gajpal and Abad (2009a; 2009b) proposed a MACS algorithm uses a new 

construction rule as well as two multi-route local search schemes for a VRPSPD. 

3. VRP with Mixed Pickup and Delivery (VRPMPD) 

There are also very few papers which explicitly deals with the VRPMPD. Being a 

close variation of the VRPSPD (Golden et al., 1985; Salhi & Nagy, 1999), most 

VRPMPD approaches are derived from the former. Similar to the VRPSPD, maintaining 

the feasibility of vehicle capacity is difficult in the VRPMPD since the available capacity 

fluctuates during the tour. Golden et al. (1985)’s approach is based on inserting backhaul 

(pickup) customers into the routes formed by linehaul (delivery) customers. Their 

insertion formula uses a penalty factor which takes into account the number of delivery 

customers left on the route after the insertion point. Casco et al. (1988) developed a 

superior load-based insertion procedure where the insertion cost for backhaul customers 

takes into consideration the load yet to be delivered on the delivery route (rather than the 

number of stops). Salhi and Nagy (1999) extended the insertion method of Casco et al. 

(1988) by allowing backhauls to be inserted in clusters, not just one by one. This 

approach yields some modest improvements and requires negligible additional 

computational effort. This procedure is also capable of solving simultaneous problems. 

Mosheiov (1994) investigated the TSPPD and demonstrates that if the solution is 

infeasible because some arcs are overloaded, feasibility can be attained by re-inserting 

the depot into the arc with the highest load. Anily and Mosheiov (1994) presents a 
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solution method for the TSPPD by creating a minimum spanning tree. While its worst-

case bound and computational complexity are better than that of Mosheiov (1994), its 

average performance is found to be slightly inferior. For the case of VRPSPB and 

VRPMPD with backhauls, Crispim & Brandão (2005) present a hybrid algorithm 

constructed through the use of TS and the variable neighborhood search metaheuristics. 

4. Complicating Factors: Heterogeneous Vehicles and Multiple Depots 

A number of further subvariants of the earlier VRP cases exist based on the 

multiplicity of the depots and the size and heterogeneity of the vehicle fleet. 

Nevertheless, literature is relatively scarce for such problems. A recent survey paper by 

Baldacci, Battara and Vigo (2008) reviews and compares variants of the CVRP involving 

heterogeneous fleet, their lower bounds and heuristic solutions. 

Min, Current and Schilling (1992) was one of few pioneering research articles to 

address the multi-depot, multi-vehicle VRPB. They decomposed the model into three 

submodels/ phases: allocation of customers and vendors into clusters, assignment of 

customers and vendors to depots and routes, and individual route configuration. The 

decomposition procedure managed to solve a real-world problem with three depots, 134 

customers and 27 vendors. Salhi and Rand (1993) improved the solution procedure by 

transforming the structure of the routes, by inserting or removing customers, and 

sometimes resulting in a reversal of the direction of parts of a vehicle route. This provides 

the foundation for the modification of the VRP algorithm into a VRPPD method and also 

for the operations to eliminate infeasibilities. For the multi-depot VRPSPD case, Nagy 

and Salhi (2005) proposed an integrated heuristic that established a weakly feasible 

solution first (one that checks only the total load delivered or picked up, but does not 

check vehicle capacity in-between nodes on the tour), and then remove infeasibilities 

through a combination of moves and an iterative procedure that reduces those 

infeasibilities in a controlled manner. Dondo and Cerda (2007) presented a novel three-

phase heuristic/algorithmic derived from embedding a heuristic-based clustering 

algorithm within a VRPTW optimization framework based on MILP mathematical 

model, and efficiently solve case studies involving at most 25 nodes to optimality. To 
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overcome this limitation, a pre-processing stage clustering nodes together is initially 

performed to yield a more compact cluster-based mixed integer linear programming 

problem formulation. 

In the heterogeneous vehicle routing problem (HVRP), the number of available 

vehicles is fixed as a priori. The decision is how to best utilize the existing fleet to sever 

customer demands. The HVRP variant is first studied by Taillard (1999), and later by 

Tarantilis, Kiranoudis, & Vassiliadis (2003; 2004), Gencer, Top and Aydogan (2006) and 

Li, Golden and Wasil (2007). Gendreau, Laporte, Musraganyi and Taillard (1999) 

circumvent the tendency for local search technique to move towards a local optimum 

with the wrong fleet composition by diversifying the search by embedding within the 

algorithm a fleet change mechanism. To minimize total travel time, Ho, Ho, Ji and Lake 

(2008) developed two hybrid genetic algorithms (HGAs), where the first generates initial 

solutions randomly, while the second used the Clarke and Wright saving method and the 

nearest neighbor heuristic in the initialization procedure. They found that performance of 

the latter is superior in terms of the total delivery time. 

In the Fleet Size and Mix VRP (FSMVRP), an NP-hard problem (Lenstra & 

Rinnooy Kan, 1981), the objective is now to find a fleet composition and corresponding 

route plan that minimizes the sum of routing and vehicle costs. Renaud and Boctor 

(2002) developed a sweep heuristic to find initial routes, and then solved a set 

partitioning problem to attain solutions to FSMVRP. Some tried to derive upper and 

lower bounds of the FSMVRP. Yaman (2006) gave several formulations of the FSMVRP 

with fixed cost, generalized subtour elimination and multistar inequalities. Based on 

derived valid inequalities, constraint lifting was used to improve the linear programming 

lower bounds. Choi and Tcha (2007) developed a set covering formulation and solved its 

linear relaxation by column generation to obtain the bounds. Comparing these methods 

on the Golden et al. (1984) benchmark instances, the best solutions have been obtained 

by Choi and Tcha (2007). 

Matching-based saving algorithms were proposed by Desrochers and Verhoog 

(1991), Salhi and Rand (1993) and Osman and Salhi (1996). Salhi and Sari (1997) 
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presented the idea of borderline customers for the multi-depot vehicle fleet mix problem, 

where two reduction tests enhanced the efficiency of a multi-level composite heuristic. 

The proposed heuristic is tested on benchmark problems involving up to 360 customers, 

two to nine depots and five different vehicle capacities. The heuristic yields solutions 

almost as good as those found by the best known heuristics but using only 5 to 10% of 

their computing time. Encouraging results were also obtained for the case where the 

vehicles have different capacities.  

Meta-heuristics have also been applied by various authors. Bräysy, Dullaert, 

Hasle, Mester, and Gendreau (2008) applied deterministic annealing to the FSMVRPTW. 

Osman and Salhi (1996) developed a short-term memory TS using moves in 1-

interchange neighborhood, while Gendreau et al. (1999) presented a TS algorithm 

embedded in an adaptive memory procedure. Taillard (1999) used heuristic column 

generation (HCG) where TS is first used to generate a set of good initial solutions; then 

an integer linear program, where each column in the program is a route from the initial 

solution, is solved to obtain the final solution. Wassan and Osman (2002) develop new 

variants of a TS meta-heuristic. These variants use a mix of different components, 

including reactive concepts, variable neighborhoods, hashing functions and special data 

memory structures, similar to adaptive memory procedures. Chen and Wu (2006) 

presented a hybrid heuristic based on an insertion-based procedure to generate good 

initial solutions and a heuristic based on the record-to-record travel, tabu lists, and route 

improvement procedures. Results showed that the proposed hybrid heuristic is able to 

reduce the gap between initial solutions and optimal solutions effectively for large-sized 

problems (50 to 199 nodes) and is capable of obtaining optimal solutions very efficiently 

for small-sized problem (15-20 nodes). Brandão (2009) developed a deterministic tabu 

heuristic, which restricts the moves in a nearest neighborhood whose size is determined 

by the estimated number of customers in a route. A GENIUS algorithm and giant tour are 

used to obtain initial solutions. Gendreau, Laporte and Semet (2001) proposed a dynamic 

model and parallel tabu search heuristic for real-time ambulance fleet relocation 

Yi and Kumar (2007) applied the ACO metaheuristic to solve the logistics 

problem arising in disaster relief activities. The proposed method decomposes the 
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original emergency logistics problem into two phases of decision-making, i.e., the vehicle 

route construction, and the multi-commodity dispatch. The sub-problems are iteratively 

solved. The first phase builds stochastic vehicle paths under the guidance of pheromone 

trails while a network-flow-based solver is developed in the second phase to assign 

different types of vehicle flows and commodities.  

Ochi, Vianna, Drummond, & Victor (1998) develop a parallel GA hybrid with 

scatter search for the FSMVRP with fixed cost. A petal decomposition procedure is 

designed to build chromosomes. Each chromosome is a set of routes, multiple depots are 

used as route delimiters, and each route is optimized through GENIUS. A vehicle type is 

assigned to a customer by choosing the vehicle with the lowest product of its remaining 

capacity and its fixed cost. Prins (2004) applies an evolutionary algorithm to the CVRP 

and Wang, Golden and Wasil (2008) design a GA to solve the generalized orienteering 

problem. Liu, Huang, Ma (2009) designed different initial solution procedures, a new 

chromosome evaluation procedure and some local search moves that are specific to the 

FSMVRP, and proposed a new single parent crossover operator. Zhao, Mei & Sun (2009) 

introduced a pheromone-based crossover operator that utilizes both the local and global 

information to construct offspring. The local information used in crossover operator 

includes edge lengths and adjacency relations, while the global information is stored as 

pheromone trails. To improve the performance of genetic algorithms, a local search 

procedure is integrated into the GA, to act as a mutation operator. Lau, Chan, Tsui, & 

Pang (2010) proposed a Fuzzy Logic Guided Genetic Algorithm (FLGA) to solve the 

problem. The role of fuzzy logic is to dynamically adjust the crossover rate and mutation 

rate after ten consecutive generations, for the problem in which multiple depots, multiple 

customers, and multiple products are considered. 

E. CONCLUSIONS FROM LITERATURE REVIEW 

In summary, this chapter describes the research from both thematic and 

methodological perspectives over the last 60 years. A number of salient conclusions can 

be drawn from the literature review.  
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From a problem definition perspective, the thesis problem is fundamentally 

different from past research in both humanitarian logistics and VRP fields. In particular, 

the OB-VRP is different from the classic VRP and its basic variants in three ways: 

• Problem complexity.    The OB-VRP possess complicating constraints in 

terms of ranked heterogeneity of customer demand (evacuee disability 

levels), multiplicity and heterogeneity of vehicle fleet and capacities, as 

well as the possibility of multiple tours by any given vehicle, which is a 

key issue. Such an overburdened problem has not been dealt with in 

literature, and existing models are not readily adaptable for the OB-VRP. 

• Objective function.    The objective of the OB-VRP is fundamentally 

different from that of VRP models in literature, which almost exclusively 

use distance and/or vehicle cost as the objective function. While routing 

cost could have been retained in the objective function, the aim in disaster 

evacuation is to save lives. As such, the authors have set the objective as 

the minimizing of the number of un-served customers. The implications 

are that a simple swap of customer nodes, a typical heuristic/metaheuristic 

operation no longer improves the objective function: to improve the 

objective function, an un-served customer must be added to one of the 

routes, thereby increasing time. Reducing time, number of vehicles, or 

number of routes does not improve the solution as it does in traditional 

VRPs. Traditional solution approaches may thus not be suitable or directly 

adaptable for the OB-VRP. 

• Problem size.    Despite advances in algorithmic approaches, solving the 

VRP, in particular the intricate VRPPD subvariants, to optimality remains 

difficult for very large problem sizes. Exact algorithms that may be used 

to provide optimum problem solutions cannot solve VRP instances with 

more than 50-100 customers (Hasler & Kloster, 2007). Approximation 

methods are able to solve problems with hundreds of requests, e.g., Toth 

and Vigo (1997) showed their approach to be computationally viable for a 
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problem consisting of more than 300 requests. Nonetheless, larger realistic 

instances are often solved to optimality only in specific scenarios (Toth & 

Vigo, 2002). 

From a solution perspective: 

• Difficulty in comparing solution methods.   The relative evaluation of 

competing approaches is difficult, because a benchmark problem set has 

not been developed for the VRPPD as it has for the generic VRP or 

VRPTW. The primary reason is the plethora of problem variants that the 

literature has addressed. Generally, much of the work has stemmed from 

applications that induced modeling differences. For example, the manner 

in which service quality is represented in the objective function or the 

constraints is often situation-specific. Furthermore, data sets currently 

used as benchmarks are made up of instances that are too small to allow 

one to differentiate sharply between the various implementations of some 

of the metaheuristics, in particular for TS (Toth & Vigo, 2002). 

• Heuristics versus metaheuristics.   Most standard construction and 

improvement procedures in use today are heuristics. They perform a 

relatively limited exploration of the search space and typically produce 

good quality solutions within modest computing times, and hence are still 

widely used in commercial packages. In metaheuristics, the emphasis is on 

performing a deep exploration of the most promising regions of the 

solution space. Solution quality is much higher than that from classical 

heuristics, but the expense is increased computing time. Moreover, the 

procedures usually are context-dependent and require finely-tuned 

parameters, which may make their extension to other situations difficult 

(Toth & Vigo, 2002). 

• Solution complexity.    Recent research tends to exhibit complexity and 

convolution in solution methodology. This is due to the need to handle the 

difficult, and sometimes conflicting, problem constraints, especially for 
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the VRPPD subvariants. Approaches often adopt problem-specific 

techniques or hybridize several heuristics and metaheuristics, or utilize 

heuristics within exact methods in order to obtain good-quality solutions. 

Unfortunately, such complex composite techniques also means it becomes 

challenging to assess which algorithmic component has contributed most 

to the success of the overall approach, if indeed, necessary at all. 

Furthermore, due to the many problem constraints that often apply, 

obtaining a feasible solution itself may be a challenge. Since the 

generation of infeasible solutions cannot be easily avoided during the 

search, solution techniques often add a repair method to fix infeasibility. 

This inevitably renders the solution algorithm less elegant and slows down 

the optimization process. 
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III. PROBLEM DEFINITION AND MODEL FORMULATION 

This chapter describes the Overburdened Vehicle Routing Problem (OB-VRP) in 

Section A. Section B gives the OB-VRP a formal definition as a graph theoretic model, 

while Section C provides a linear mixed integer formulation first presented in Apte and 

Heath (2011). 

A. PROBLEM DESCRIPTION 

The OB-VRP takes place in the context of a sudden-onset disaster where roads 

are still traversable. The aim is to develop a routing plan that sends vehicles from depots 

to pick up and evacuate as many mobility-challenged evacuees as possible from their 

homes to a common shelter, within given constraints. Known a priori are the number, 

location, disability level, and loading/unloading times of evacuees, the number and 

location of all depots, as well as the fleet type and size. The mapping of evacuees’ 

disability level to the minimum type of vehicle required is also known; lower disability 

severity evacuees can be transported on a vehicle designed for higher severity people, but 

not vice versa. Loading and unloading times vary for different evacuees. There is no 

prioritization of people during evacuation. While evacuees are characterized by their 

location, not all evacuee locations are unique (it is possible to have more than one 

evacuee at a location. It is also not assumed that a vehicle has to pick up everyone at the 

same location simultaneously. Multiple trips are allowed so long as the overall 

evacuation time available is not exceeded.  

The vehicles may be based at more than one originating depot, though some 

vehicles may have the same originating depot. The capacities of each vehicle for each 

need level of customer is known. The total load carried by each vehicle at any given time 

cannot not exceed its capacity. Each vehicle type takes the same amount of travel time to 

travel from point to point. While there is no limiting starting and ending times in place, 

the entire evacuation must take place within one time window constrained by total 

available time.  
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B. PROBLEM DEFINITION 

The OB-VRP may be defined as the following graph theoretic problem. Let G = 

(V, A) be a connected and complete graph, where V = {0,..., N+K} is the node set and A 

is the arc set. Nodes i = 1,..., N correspond to the customers (evacuees), whereas node 0 

corresponds to the common shelter node s and nodes N+1, …, N+K are the origin depot 

nodes associated with the K vehicles.  

A nonnegative cost, tij, is associated with each arc (i, j) ∈ A and represents the 

time cost spent to go from node i to node j. Although the use of loop arcs (i, i) is not 

allowed, if some evacuee nodes have the same physical location, this will be denoted by 

an arc travel time of zero between them but they remain separate nodes. G is a non-

directed graph and the cost matrix t is symmetric, i.e., tij = tji. The time-cost matrix 

satisfies the triangle inequality, i.e., it is not convenient to deviate from the direct 

Euclidean path between two nodes i and j.   

Each customer node i is associated with a known non-negative demand  dil  where 

l denotes the disability severity level of that customer node. ui characterizes the 

unloading and loading time for customer i. Both dil and ui are deterministic and known in 

advance. 

A set of K heterogeneous vehicles, each with capacity ckl, is available at the K 

origin depot nodes. To ensure feasibility, it is assumed that dil  ≤  ckl, for each i = 1, … , 

N . Each vehicle may perform more than one tour by dropping at the shelter node 

customers picked up earlier and returning for additional customers. R represents the 

maximum number of tours vehicles can make, while T specifies the total time available to 

perform the evacuation. 

The OB-VRP then aims to determine the feasible assignment of vehicles to 

people, and the corresponding sequence of tour-routes, so that the objective function 

(total number of customers not evacuated) is minimized, such that: 

• each tour-route visits the shelter node; 

• each customer node is served at most once;  
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• the sum of the demands of the customer nodes visited by a vehicle on any 
one tour must be nonnegative and never exceeds its capacity ckl; and  

• total time taken does not exceed time available for evacuation T. 

C. MODEL FORMULATION 

Three different basic modeling approaches have been proposed for the VRP and 

its variants in the literature. The first approach uses vehicle flow formulations which use 

integer variables, associated with each arc of the graph, to count the number of times the 

arc is traversed by a vehicle. Vehicle flow formulations are well-suited for cases where 

relevant constraints can be effectively modeled through an appropriate definition of the 

arc set and of the arc costs. That said, vehicle flow models cannot be used to handle cases 

when the solution cost depends on the overall node sequence (Toth & Vigo, 2002). The 

second approach uses models based on commodity flow formulation, where additional 

integer variables are associated with the arcs and represent the flow of commodities along 

the paths traveled by the vehicles. Such models have been used in recent times as a basis 

for exact VRP solutions. The third approah formulates the VRP as a Set-Partitioning 

Problem (SPP). The main advantage of this model approach is that that it produces a 

formulation whose linear programming relaxation is typically much tighter than in the 

other methods (Toth & Vigo, 2002); however, such models generally require dealing with 

a very high number of variables compared to the others.  

We now provide a four-index vehicle flow formulation, first presented in Apte 

and Heath (2011). Two-index vehicle flow models have already been used extensively to 

model basic VRPs but they generally are inadequate for more complex variants. In fact, 

they can be used only when the cost of the solution can be expressed as the sum of the 

costs associated with the traversed arcs. In addition, it is not possible to directly know 

which vehicle traverses an arc used in the solution. Hence, these models are not suited for 

the cases where the cost (or the feasibility) of a circuit depends on the overall vertex 

sequence or on the type of vehicle allocated to the route. The three-index vehicle flow 

formulation somewhat overcomes this drawback, explicitly indicating the vehicle that 

traverses an arc, so that more involved constraints may be imposed on the routes. 
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Nonetheless, the complexity of the OB-VRP requires the introduction of a fourth index to 

represent the trip or tour sequence, thus generalizing and strengthening the lower-

dimensional formulations.  

1. Sets 

A set of all arcs in graph 

V set of all nodes in graph, V = {0,...,N+K} 

O subset of V consisting of all origin depot nodes for vehicles; within set V, O will 

be indexed with N+1,...,N+K where 1,...,K is the vehicle originating at node 

N+1,...,N+K, respectively  

s shelter node which is the destination for all customers; within set V, s will be 

indexed with 0 

C subset of V consisting of all nodes in V with a customer needing to be evacuated; 

each node in C represents one person needing to be evacuated (1 unit of supply); 

within set V, C will be indexed with 1,...,N 

C+  union of s and C; the set of all possible nodes vehicles may visit once they leave 

their depot 

2. Parameters 

T total time available to perform the evacuation 

K number of vehicles 

N number of customers needing to be evacuated 

R maximum number of trips a vehicle can make 

L number of levels of different transportation needs customers can have 

tij time it takes for any vehicle to traverse arc (i, j) ∀ i,j∈V 

dil supply at node i, with need level l, ∀ i∈C, l∈L; Cid
Ll

il ∈∀=∑
∈

,1   
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ckl capacity of vehicle k for customers of level l, ∀ k∈{1,...,K}, l∈L  

ui unloading and loading time for customer i, ∀ i∈C   

3. Variables 

xijkr equals 1 if arc (i, j) is traversed by vehicle k on trip r in the solution, ∀ i,j∈V, 

 k∈{1,...,K}, r∈{1,...,R}; equals 0 otherwise 

yikr equals 1 if customer i is serviced by vehicle k on trip r, ∀ i∈ C, k∈{1,...,K}, 

 l∈L, r∈{1,...,R}; equals 0 otherwise 

4. Objective Function 

Minimize:  ∑∑∑
∈ ∈ ∈

−
Kk Rr Ci

ikryN        (3.1) 

5. Constraints 

Subject to:           

1 1ijk
j C

x
+∈

=∑    KkkNi ,...,1, =+=∀     (3.2) 

1 0ijk
j O

x
∈

=∑     KkkNi ,...,1, =+=∀     (3.3) 

0 1 1j k
j V

x
∈

=∑    Kk ,...,1=∀      (3.4)  

1 1ijk jik
j V j V

x x
∈ ∈

=∑ ∑    , 1,...,i C k K∀ ∈ =     (3.5) 

0ijkr
k K j V

x
∈ ∈

=∑∑    , 2,...,i O r R∀ ∈ =     (3.6) 

ijkr jikr
j V j V

x x
∈ ∈

=∑ ∑    , 1,..., , 2,...,i V k K r R∀ ∈ = =    (3.7) 

ijkr ikr
j V

x y
∈

=∑    RrKkCi ,...,1,,...,1, ==∈∀    (3.8) 

1
1 1

≤∑∑
= =

K

k

R

r
ikry    Ci ∈∀       (3.9) 
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kl
Ci

ilikr cdy ≤∑
∈

   LlRrKk ,...,1,,...,1,,...,1 ===∀   (3.10) 

1−≤∑∑
∈ ∈

Sx
Ci Cj

ijkr    RrKkSCS ,...,1,,...,1,2||, ==≥⊆∀   (3.11) 

Txtyu
R

r Vi Vj
ijkrij

Ci
ikri ≤+∑ ∑∑∑

= ∈ ∈∈1
)2(  Kk ,...,1=∀      (3.12)  

{ }1,0∈ijkrx     RrKkVjVi ,...,1,,...,1,, ==∈∈∀   (3.13)  

{ }1,0∈ikry     RrKkCi ,...,1,,...,1, ==∈∀    (3.14) 

 

The goal in Equation (3.1) is to minimize the total number of customers that do 

not get evacuated. Constraints (3.2) and (3.3) ensure that each vehicle leaves its own 

depot exactly once on the first trip and does not go to another vehicle’s depot. Constraint 

(3.4) ensures that each vehicle enters the shelter once on its first trip (having departed 

from its depot on the first trip). Constraint (3.5) is the balance of flow constraint for the 

customer nodes for the first trip of each vehicle. Constraint (3.6) ensures that no vehicles 

leave any of the depots on subsequent trips. Constraint (3.7) is the balance of flow 

constraint for all nodes on subsequent trips. Constraint (3.8) sets the value of the y 

variables.  

Constraint (3.9) ensures each customer is serviced no more than once. Constraint 

(3.10) is the capacity constraint for each customer need level l, for each trip that each 

vehicle makes. Constraint (3.11) is the classic subtour elimination constraint, but note 

that sub-tours are only infeasible if they occur entirely within the subset of customer 

nodes. Constraint (3.12) constrains the total of all time spent by each vehicle loading 

customers, unloading customers, and traveling to be within the total time available for 

evacuating. Constraints (3.13) and (3.14) define the variables. 

An important issue is the definition of objective. This is a difficult, and to some 

extent, unresolved task in humanitarian logistics given the intricate difficulty in assigning 

a suitable performance metric. Should the objective cost be based on money spent and/or 

cost to the economy? Or should it be based on the cost the fatalities or suffering of the 
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survivors or both?  Assigning monetary value to social utility is a complex and ethical 

issue. Nonetheless, over the years, the objective of evacuation research has somewhat 

evolved from minimizing costs to maximizing public welfare (ReVelle, Bigman, 

Schilling, Cohon, & Church, 1977). This is expected given that the primary aim in a 

supply chain in humanitarian logistics is to minimize “loss of life and alleviate suffering” 

(Thomas, 2003). The supply chain for any humanitarian response can be deemed truly 

successful only if it “mitigates the urgent needs of a population with a sustainable 

reduction of their vulnerability in the shortest amount of time and the least amount of 

resources” (Van Wassenhove, 2006, p. 480). As such the OB-VRP has adopted the 

objective of minimizing the number of un-served customers (evacuees). 



 60 

 

THIS PAGE INTENTIONALLY LEFT BLANK  



 61 

IV. SOLUTION DEVELOPMENT 

A solution algorithm was developed with emphasis on several priorities that 

would best benefit an emergency responder. First, the algorithm needed to be robust 

enough to always be able to find some solution. Second, a simple algorithm that could 

find a relatively good solution was desired over a complex one that could find the 

absolute optimum solution, since the ultimate goal is a “push-button” algorithm that a 

non-academic user could operate quickly and effectively in a disaster situation. 

A. PRELIMINARY STUDIES 

The early search for a suitable algorithm centered on basic heuristic methods such 

as an adaptation of the Clarke-Wright Savings algorithm (Clarke & Wright, 1964). The 

primary advantage of these methods is their sheer simplicity; however, in adapting these 

methods to the OB-VRP, they became unnecessarily complex, without any additional 

improvement in accuracy. 

A search through modern metaheuristics revealed several promising candidates, 

including Genetic Algorithms, Simulated Annealing, Tabu Search, GRASP, and Ant 

Colony Optimization (ACO).  

The ACO appeared particularly suited to the problem: it could be implemented 

easily and it allowed a simple route-construction heuristic. In addition, it could be 

expanded with additional routines such as a Multiple Ant Colony System or the 

incorporation of local search heuristics within the route construction module. Finally, 

ACO routines have been shown in literature (Dorigo, Maniezzo, & Colorni, 1996) to 

perform on par with other popular metaheuristics such as Tabu Search, strengthening 

confidence that the ACO can find a very good solution. 



 62 

B. SOLUTION FEATURES AND INSIGHTS  

The final algorithm merged an ACO routine with two different greed-based 

heuristics. The ACO routine will be discussed in Section 1, and the heuristic 

contributions will be discussed in Section 2. 

1. Ant System 

Dorigo & Stutzle (2004) and Shtovba (2005) each reviewed the various 

incarnations of the ACO; based upon a review of their work, we built a hybrid Ant 

System (AS) algorithm designed to take advantage of the best features of each.  

First, the base system was modeled after the Min-Max Ant System (MMAS) of 

Stutzle & Hoos (1997), predominantly because of that algorithm’s particularly strong 

evaluated ability to quickly find good quality solutions. The MMAS differs from the 

original AS algorithm by specifying an upper and lower bound on the pheromone levels. 

The pheromone levels are universally set to the maximum for the initial iteration. Only 

the best solution at the end of each iteration receives pheromone deposition. Since the 

OB-VRP is a new problem, the algorithm was initially required to evaluate a large 

solution space, to avoid finding local optimums; to this end, the MMAS was modified to 

allow several good solutions to affect the pheromone levels, as opposed to the original 

model that only considered the best ant per iteration.  

This was effected by creating a “best solutions” list, and adding elite ants (Dorigo, 

Maniezzo, & Colorni, 1996) and a ranked contribution system (Bullnheimer, Hartl, & 

Strauss, 1999b). The elite ant is a concept borrowed from one of the first evolutions of 

the original AS algorithm (Dorigo, 1992); the original AS allowed pheromone deposition 

for each ant’s constructed route, and the elite ants were an additional weighting of 

pheromone deposition for the best route, analogous to σ extra ants depositing their 

pheromones on that route.  

The MMAS as originally constructed restricted pheromone deposition to one elite 

ant; however, Çatay (2009) used a rank-based system with an MMAS. The ranked system 

is a simple concept similar to the elite ant. Instead of only the best solution receiving 
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deposited pheromones, all the solutions in the “best solutions” list receive some 

pheromone deposition. The top-ranked solution in the list receives a higher proportion of 

pheromones than the lowest-ranked solutions in the “best solutions” list. That is, for a 

“best solutions” list of size w, the ranked system is equivalent to w ants marching over 

the best solution, w-1 ants marching over the second best solution, and so forth. 

Each of these contributing factors was controlled by a set of variables which were 

included in the initial call of the routine; at any time, they could be turned on or off, or set 

to different levels. For example, the initial call could prescribe 10 elite ants, plus a ranked 

system including the top five solutions. In this particular instance, the best solution would 

see 10 elite ants march over it, plus 5 “ranked ants”; the second best solution would see 

zero elite ants and 4 “ranked ants” march over it; etc. 

The pheromones, in their most basic form, represent information gleaned from 

past iterations that influences the current iteration, and are stored in a matrix τ = {τij} 

which covers all possible node combinations. After several iterations, the ant will prefer 

selecting the more optimum node connections due to their heavier weight in pheromone 

levels (Figure 5). By carefully selecting the weighting of the pheromone deposition levels 

and the rate of decay, near-optimum solutions can be teased from the random selections, 

as shown in Figure 6; note that the optimum path has a high pheromone weight and 

therefore a high probability of being selected, which further contributes to more 

pheromones being added to it in a virtuous cycle. Note also that there still exists a finite 

amount of pheromones in the alternate routes, leaving open the chance of exploring 

alternate routes. 
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Figure 5. Effects of pheromone deposition 

 

Figure 6. Example solution 
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2. Heuristic 

In Dorigo and Stutzle’s (2004) evaluation, the addition of a simple heuristic to the 

route construction procedures for the ants resulted in a convergence to an optimum with 

fewer iterations than a completely random approach. Dorigo, Maniezzo, & Colorni, 

(1996) compared this to the ant’s “visibility.” Two heuristics were chosen for this 

algorithm. The first, a neighborhood ant heuristic (η1), entailed limiting the routes 

available to an ant to the nearest Ω nodes, with Ω being set by the user when the routine 

was called. The node weighting matrix for heuristic η1 is defined in Equation 4.1.  

1 1 1 if among nearest  nodes by travel time
( ) ( , )

0 otherwiseijNeighborhood ant i jη η
Ω := = ∀  

(4.1)  

The second ant heuristic, η2, simply weighted the probability of the node being 

selected by the proximity of that node to the one that the ant currently sat on; near nodes 

were more likely to be selected than far nodes, although a finite probability of selection 

existed for far nodes at all times, in contrast with the first heuristic (Equation 4.2). This 

second type of ant draws parallels to the GRASP methodology, in terms of specifying a 

preference for a greedy route but leaving open the option for random perturbations from 

the greediest route. The GRASP method was described in II.C.3.a.(1). 

2 2( - ) : travel time rank among available nodes ( , )ijGreedy random ant i jη η = = ∀     
(4.2)  

To avoid limiting the routine to nodes specified by these two heuristics, a third 

type of ant was constructed, η3, that relied exclusively on pheromones to guide its node 

selection (Equation 4.3). Figure 7 illustrates all three heuristics’ philosophies. 

3 3( - ) : 1            ( , )ijPheromone only ant i jη η = = ∀            (4.3)  
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C. OVERVIEW OF COMPLETE ALGORITHM 

The algorithm executes the following steps. First, the ant type is selected at 

random between the nearest neighborhood ant (η1), the greedy-random ant (η2) or 

pheromone-only ant (η3). The route construction starts at a randomly-chosen vehicle 

node. The list of un-selected nodes is filtered down to nodes that are able to fit travel time 

to the node, plus time to load the passenger, plus travel time to the shelter, plus time to 

unload the passenger, all without exceeding the total time available. This filtered list of 

nodes has weights η assigned according to the appropriate ant-heuristic, and then a 

second set of weights assigned according to the pheromone matrix τ. Each set of weights 

is proportioned exponentially according to values assigned when the routine is initially 

called: α for the pheromone weight and β for the heuristic weight.  

τ and η are combined in two different fashions: one a normalized sum and the 

other a normalized product. During initial programming, the probabilities were 

normalized, weighted exponentially, then added to each other and renormalized. This 

approach was selected based on its simplicity, with the intention that the combination 

would be upgraded during a later revision to the formation presented by every other ACO 

in the literature. In the more standard formulation, the two weighted probabilities are 
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Figure 7. Heuristic node mapping 
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multiplied by each other and then renormalized. The probability computation can be 

generalized for any node i to any node j, as shown in Equations 4.4 (additive formulation) 

and 4.5 (multiplicative formulation). As it turned out, the additive formulation generated 

relatively good results, so it was formally evaluated against the original formulation. 

[ ] [ ]

[ ]
[ ]

[ ]
[ ]

,   feasible nodes

ij ij

in in
n n

ij

in in

n in in
n n

P n

α β

α β

α β

α β

τ η

τ η

τ η

τ η
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,   feasible nodes
[ ] *[ ]
ij ij

ij
in in

n

P n
α β

α β

τ η
τ η

= ∀
∑      (4.5)  

The process of node selection continues node-by-node. When no nodes are 

available, the route is directed back to the shelter and the occupants are unloaded. If 

additional routes are allowed, the vehicle is sent back out, accumulating nodes as before. 

If additional routes are not allowed, a different vehicle is selected and the time is reset. If 

all vehicles have been used, a new ant is selected and the whole process is repeated. 

Once all ants have been used – the number of ants is set by the user when the 

routine is called – the algorithm picks the best solutions, which minimize the cost 

function of the number of un-served customers. A user-specified number of best solutions 

are stored in a list.  

The pheromone matrix τ is then degraded by multiplying by (1-ρ), where ρ is a 

user-specified parameter value less than one that represents the rate of decay of 

pheromone information. Next, for all node pair combinations Tij which were traveled by a 

solution, pheromones Δτ are added to the pheromone matrix; the added pheromones are 

divided by the number of un-served customers U on the tour, which serves to dilute the 

effects of less-effective tours. Δτ is modified by a pair of multipliers. The first multipliers 

are the elite ants: a user-specified number σ of elite ants march over the best solution B. 
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The second multiplier depends on a user-specified binary value Z; if Z is 1, the 

pheromones are weighted by the solution’s rank position in the best solution list w, with 

the most efficient solution receiving a higher weight than the less efficient solutions. 

When Z is 0, the option to weight pheromone addition by weight is turned off. The 

overall change in τ is encapsulated by Equation 4.6; note that even in the case of σ=0 and 

Z=0, pheromones Δτ are still added.  

( )
*Δ

*(1- ) * 1 *(Z , for all ants t

where
1      if edge  ,  was traversed by ant   during tour
0   otherwise

1  for best solution
0  otherwise

1      for user
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=




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tion to use rank-based weighting
0  otherwise





    (4.6)  

Once the pheromones have been updated, the procedure re-starts for another 

iteration, proceeding to a pre-identified iteration limit. In the case that time is not a 

limiting factor, such as for a small number of routes allowed per vehicle, an lower bound 

can be computed for the number of unserved customers, which would trip the procedure 

to conclude before the iteration limit is reached. For N customers, K vehicles with ck 

capacity per vehicle, and R routes allowed, the lower bound of the number of un-served 

customers may be determined as shown in Equation 4.7. 

max( * ,0)lowerbound k
K

S N c R= − ∑         (4.7)  

To prevent the routine from becoming locked into a local optimum, a condition 

(Equation 4.8) was added that would reset the pheromone matrix if the best solutions 

remained the same for a number of iterations, using a procedure known as Pheromone 

Trail Smoothing (Stutzle & Hoos, 1997). The proportion of reset depends on the value of 

δ. The idea is to weaken the pheromone matrix, but not to completely abandon it; δ may 
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range from 1 to 0, with δ=1 corresponding to a complete reset of τ to τmax, and δ=0 

corresponding to no reset at all. 

max +(1- ) , with  0 1old
ij ij
newτ δτ δ τ δ= < <        (4.8)  

An overview of the pseudo-code is given in Figure 8. Table 1 gives a description 

of the full list of variables used in the algorithm. 

 

Variable Description 

τ Pheromone value 

Ω Number of nodes in neighborhood 

α Exponential weight to pheromones 

β Exponential weight to heuristic 

σ Number of elite ants 

η Heuristic value 

ρ Pheromone degradation multiplier 

δ Proportion of pheromone reset 

Δτ Pheromone deposition amount 

U Number of un-served customers 

w Size of ranked candidate lists 

Table 1. List of Variables Used in Algorithm 
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13 
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19 

20 

21 

22 

23 

24 

Loop iterations until iteration limit has been reached 

Loop Ants until all Ants have been used 

Select Ant (from neighborhood, greedy-random or pheromone 

only) 

Create Route 

Loop until all available nodes have been used 

Select vehicle at random 

Evaluate list of available nodes 

Check for feasibility 

Weight probabilities (Equation 4.4 or 4.5) 

Select node 

If all nodes have been used: 

Send to shelter 

reset vehicle 

create additional routes if feasible (by sending back 

to beginning of loop) 

End route creation loop 

End Ant Loop 

Evaluate solutions 

Record best solutions 

Update pheromone matrix (Equation 4.6) 

If solutions are stuck in local optimum (i.e., best solutions list has not 

changed over several iterations) 

 Reset pheromone matrix (Equation 4.8) 

End iteration loop 

Figure 8. Pseudocode for hybrid ant system algorithm 
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D. ALGORITHM EXAMPLE 

To further illustrate how the routine works, a brief example follows. 

1. Dataset and User Specified Values 

To construct the dataset, the travel time between nodes was first established. This 

was done by placing the shelter at the origin and then randomly assigning integer 

coordinates to the remaining nodes using a routine. The number of customer nodes was 

set at 7 to allow a variety of solutions to be explored without becoming too complex. The 

model was laid out as shown in Table 2. Note that the time units are intentionally left 

without dimension, allowing the user to select whatever units are most desirable, as long 

as they remain consistent throughout the problem. 

 
Variable Value 
Vehicles 1 

Vehicle capacity 2 
Number of disability levels 1 

Number of allowed routes per vehicle 6 
Time limit (nondimensional) 36 

τmax 1000 
τmin .05 
ρ .2 
Σ 0 
Δτ 500 
α 2 
β 2 
Ω 4 

Table 2. Parameter Values for Example Problem 

 

The dataset is designed so that the time available is the limiting factor; the 

vehicles are not expected to have the time to perform six routes. Table 3 describes the 

remainder of the dataset. Figure 9 shows graphically the relative locations of the points in 

Euclidean travel-time space. 
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Node 
Description 

Node 
Number 

X-Coord Y-Coord Number of 
 Customers 

Load 
Time 

Shelter S 0 0   
Customer 1 1 6 1 6 
Customer 2 5 8 1 2 
Customer 3 5 6 1 1 
Customer 4 -1 -1 1 2 
Customer 5 -5 3 1 1 
Customer 6 4 -6 1 1 
Customer 7 1 -1 1 3 

Depot D -2 -2   

Table 3. Dataset for Example Problem 

 

Figure 9. Location of Nodes in Travel-Time Space 
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2. Distance and Loadtime Matrix Calculation 

In this example, we pre-calculate the travel time matrix, whereas the current 

version of the implemented algorithm only has partial pre-processing in place. We 

believe pre-processing is a good idea, as it limits the number of calculations and likely 

decreases the computation time. Table 4 shows the final distance and load time matrix; 

each row and each column represents a node. This will be decremented from the time 

remaining each time a node is selected. For this, and all other matrices discussed in this 

example section, the rows should be regarded as the “from” node and the columns as the 

“to” node. Note that once a vehicle has departe from the depot D, it will not revisit the 

depot, so there is consequently no D column. 

 

S 1 2 3 4 5 6 7
S 0 18.08 13.43 9.81 5.41 7.83 9.21 7.41
1 6.08 12.00 8.47 6.00 11.28 8.71 14.37 13.00
2 9.43 16.47 4.00 4.00 14.82 13.18 16.04 15.85
3 7.81 16.00 6.00 2.00 13.22 12.44 14.04 14.06
4 1.41 19.28 14.82 11.22 4.00 7.66 9.07 8.00
5 5.83 18.71 15.18 12.44 9.66 2.00 14.73 13.21
6 7.21 24.37 18.04 14.04 11.07 14.73 2.00 11.83
7 1.41 19.00 13.85 10.06 6.00 9.21 7.83 6.00
D 2.83 20.54 16.21 12.63 5.41 7.83 9.21 9.16

From

To

 

Table 4: Travel Time Plus Load Time Matrix 

 

In Table 5 we construct a similar matrix to Table 4 but add the travel time from 

the customer node to the shelter; in this case adding the transposed column S to each row. 

This gives the minimum time required to serve a node’s customer, travel back to the 

shelter, and disembark the customer. It is distinct from distances in Table 4 because the 

return trip to the shelter changes with each customer node. The purpose of Table 5 is to 

filter the potential destinations from a node to only those nodes which can be served in 

the remaining time. 
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1 2 3 4 5 6 7 D
S 24.17 22.87 17.62 6.828 13.66 16.42 8.828 5.657
1 18.08 17.91 13.81 12.69 14.54 21.58 14.41 11.37
2 22.55 13.43 11.81 16.23 19.01 23.25 17.26 15.03
3 22.08 15.43 9.81 14.63 18.27 21.25 15.48 13.46
4 25.36 24.25 19.03 5.414 13.49 16.28 9.414 4.243
5 24.79 24.61 20.25 11.07 7.831 21.94 14.63 8.659
6 30.45 27.47 21.85 12.49 20.56 9.211 13.25 10.04
7 25.08 23.28 17.87 7.414 15.04 15.04 7.414 5.991
D 26.63 25.64 20.44 6.828 13.66 16.42 10.58 2.828

From

To

 

Table 5. Minimum Time Left Required for each Node 

3. First Iteration 

Every element of the τ matrix is initialized to τmax, as illustrated in Table 6. 

To
S 1 2 3 4 5 6 7

S 1000 1000 1000 1000 1000 1000 1000 1000
1 1000 1000 1000 1000 1000 1000 1000 1000
2 1000 1000 1000 1000 1000 1000 1000 1000
3 1000 1000 1000 1000 1000 1000 1000 1000

From 4 1000 1000 1000 1000 1000 1000 1000 1000
5 1000 1000 1000 1000 1000 1000 1000 1000
6 1000 1000 1000 1000 1000 1000 1000 1000
7 1000 1000 1000 1000 1000 1000 1000 1000
D 1000 1000 1000 1000 1000 1000 1000 1000  

Table 6. τ Matrix Initialized at τmax.  

a. First Node 

The first node of the first route will be the vehicle depot; if there were 

multiple vehicles, one depot would be randomly picked. In this case, node 8 is Depot D. 

Normally the type of heuristic is chosen for each ant and is kept through all nodes and 

routes for the full tour, but in this example we will illustrate all three heuristics. For the 

first node we choose the random heuristic η3; that is, no heuristic weighting at all. The 

pheromone weighting is extracted from the τ matrix; in this case, it is trivial and all nodes 

are weighted with the value of τmax, in this case 1000. We filter the nodes for time; the 

time available is the full time allotted, in this case 36. Since all elements of row D (the 
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current node) of Table 5 are less than 36, all of the nodes are viable and are labeled with a 

binary “1” in Table 7; if any nodes had been non-viable, they would have been labeled 

with a “0” and their contribution would have been nullified when multiplied through. 

Table 7 enumerates the values assigned to each node. Next we filter for capacity; in this 

case, the capacity is trivial since there is only one disability level: the customer at each 

node will be able to fit into our vehicle. If there were multiple disability levels and the 

vehicle was only able to carry less-disable customers, as in the instance of a stretcher-

bound customer and a vehicle unable to service stretchers, then those “stretcher nodes” 

would be filtered out. Absent the higher levels of disability, all nodes are given a “1” in 

Table 7. 

The method of combining probabilities normally does not change during 

computation; for purposes of illustration, we change the combination method in this 

example. The probabilities of node selection for the second node will be computed using 

the additive formulation. First, each heuristic value is converted to a probability; that is, 

they are normalized so the sum is equal to 1; in this case, all the heuristic probabilities 

will be 1/(1+1+1+1+1+1+1) = 1/7 or .1429. Next the same process is applied to the 

pheromone values, with the same result of 1000/7000 or .1429. The next step in the 

algorithm raises each heuristic probability to the power of β and each pheromone 

probability to the power of α. The probabilities are then added together and multiplied by 

the binary operators from the time and capacity filters. The totals are re-normalized so 

their aggregate sum is 1. Table 7 shows the final probabilities for the choice of the second 

node. A random number generator selects the next node using a cumulative distribution 

based on the probability distribution; in this case, the random number is .054. When the 

random number is compared to the cumulative probability distribution for the nodes, the 

node chosen for the second node is node 1. The time is updated as follows: after traveling 

to this node, and reserving appropriate time to disembark the customers at the shelter 

node when the vehicle returns at the end of the route, the remaining time will be 15.46. 
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Node Heuristic Pheromone Time Capacity Final
1 1 1000 1 1 0.142857143
2 1 1000 1 1 0.142857143
3 1 1000 1 1 0.142857143
4 1 1000 1 1 0.142857143
5 1 1000 1 1 0.142857143
6 1 1000 1 1 0.142857143
7 1 1000 1 1 0.142857143  

Table 7. Values and Probability Assigned to Each Node from First Node 

b. Second Node 

Using the updated time left value of 15.46, the remaining nodes 2-7 are 

evaluated for feasibility based on row 1 from Table 5; the feasible nodes in this case will 

be 3, 4, 5, and 7. For this node we choose to illustrate the greedy random heuristic η2 

shown in Equation (4.2); using Table 4, we rank the available nodes as 3, 5, 4, and 7 and 

assign values of 4, 3, 2, and 1 to each node, respectively. That is, node 3 ranks the highest 

because it has the lowest travel plus load time and is therefore assigned the highest rank 

of 4; when converted to a probability, node 3 would have a 40% probability of selection 

based on heuristics only, while node 7 would have only a 10% probability of selection. 

Since this is still the first iteration, the τ matrix has not changed and all the 

pheromone weights will be 1000 again. Likewise, filtering each node for available 

vehicle capacity fails to eliminate any nodes. Table 8 shows the resultant probability 

distribution after a repeat of the additive combination process. With a random number 

generated by the computer of .033, the node chosen becomes node 3. The 6 time units 

computed for this node pair in Table 4 is subtracted from the previous time left of 15.46, 

leaving 9.46. 
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Node Heuristic Pheromone Time Capacity Final
2 0 1000 0 1 0.00
3 4 1000 1 1 0.46
4 2 1000 1 1 0.16
5 3 1000 1 1 0.29
6 0 1000 0 1 0.00
7 1 1000 1 1 0.09  

Table 8. Values and Probabilities Assigned to Each Node from Second Node 

 

From the second node, a filter for capacity results in no feasible nodes, so 

the route is considered finished and the time left is decreased by the travel time to the 

shelter node, calculated in Table 4 as 7.81, to a value of 1.64. Thus, the nodes for the first 

route of the first tour are, in order: D, 1, 3, and S. Total travel time is 34.36 time units. 

c. Second Route 

The second route begins at the shelter node, node S. However, a glance at 

Table 5 reveals that the travel time required for each of the remaining nodes 2, 4, 5, 6, 

and 7 exceeds the time left of 1.64; therefore, ant 1 has completed its tour. 

d. Pheromone Adjustment 

If there were additional ants in this problem, each one would in turn create 

a tour. However, for simplicity, we used a single ant; therefore, the first iteration is 

complete after the single tour.  

In between the iterations, the τ matrix is updated by Equation 4.6. The 

elements that receive pheromone deposits would be (D,1); (1,3); and (3,S). The updated τ 

matrix is shown in Table 9. 
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To
S 1 2 3 4 5 6 7

S 200 200 200 200 200 200 200 200
1 200 200 200 300 200 200 200 200
2 200 200 200 200 200 200 200 200
3 300 200 200 200 200 200 200 200

From 4 200 200 200 200 200 200 200 200
5 200 200 200 200 200 200 200 200
6 200 200 200 200 200 200 200 200
7 200 200 200 200 200 200 200 200
D 200 300 200 200 200 200 200 200  

Table 9. Updated τ Matrix. 

4. Second Iteration 

Much like the first iteration, the second iteration progresses route by route and 

node by node. The first node is the depot, node 8. Nodes 1–7 are feasible for capacity and 

for time. We use the neighborhood heuristic η1 here; since Ω=4, we use the four closest 

nodes, using row 8 of Table 4, which gives nodes 4, 5, 6, and 7. With the multiplicative 

algorithm, Equation 4.5, the probabilities resolve to those listed in Table 10. The random 

number generator gives .87 in this case, which means that node 7 is the next node. 

 

Node Heuristic Pheromone Time Capacity Final
1 0 300 1 1 0
2 0 200 1 1 0
3 0 200 1 1 0
4 1 200 1 1 0.25
5 1 200 1 1 0.25
6 1 200 1 1 0.25
7 1 200 1 1 0.25  

Table 10. Values and Probabilities Assigned to Each Node from First Node, Second 
Iteration 

5. 20th Iteration 

To further illustrate the multiplicative algorithm, Equation 4.5, we fast-forward to 

the 20th iteration. By this iteration, the τ matrix has degraded in most places to its 
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minimum value. For the sake of illustration, we continue the previous route from node 7, 

and remove the heuristic influence. The resulting probabilities are shown in Table 11. 

 

Node Heuristic Pheromone Time Capacity Final
1 1 0.05 1 1 2.40E-07
2 1 0.05 1 1 2.40E-07
3 1 0.05 1 1 2.40E-07
4 1 20 1 1 0.04
5 1 0.05 1 1 2.40E-07
6 1 100 1 1 0.96  

Table 11. Values and Probabilities Assigned to Each Node from Second Node, 20th 
Iteration 

6. Conclusion 

The process continues until the number of iterations reaches a pre-defined limit. 

An actual solution for this dataset is shown in Figure 10; the solution shows three 

un-served customers and two routes traveled by the single vehicle. 

 

Figure 10. One Solution to Example Problem. 
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V. EMPIRICAL ANALYSIS 

This chapter presents the results from empirical investigations. Section A 

describes the test datasets used while Section B outlines the experimental set-up. Section 

C presents sample visual plots of the optimized route-tour while Section D compares the 

performance of the additive approach against Dorigo (2000)’s multiplicative approach. 

Section E identifies heuristic parameter settings that cater to a range of test scenarios. 

A. TEST DATA 

The complexity of the OB-VRP means that there is no readily-available standard 

datasets in literature to validate or benchmark the solution. As such, five new stylized 

datasets are constructed in this study to cover the diverse possible scenarios in terms of 

number of customers, disability level, vehicle capacities, total time available, etc. Their 

characteristics are summarized in Table 12. Detailed specifications are in Appendix A. 

 
 Number of 

vehicles, K 
Number of 
customers, N 

Number of 
disability 
levels, L 

Maximum number 
of tours allowed 
per vehicle, R 

Total time 
available, 
T  

Dataset 1 2 40 1 2 200 
Dataset 2 4 40 3 5 500 
Dataset 3 4 100 2 6 400 
Dataset 4 2 15 1 4 15 
Dataset 5 3 20 2 6 300 

Table 12. Main Characteristics of Test Data 

Datasets 1 and 4 represent simple scenarios with two vehicles and one disability 

level. Specifically, the node locations, load/unloading times and other parameters are 

prescribed in Dataset 4 such that the global optimal solution is known a priori, i.e., five 

un-served customers. Datasets 2 and 3 represent more complex cases with more vehicles, 

nodes and disability levels. Node locations and loading/unloading times for each dataset 

are randomly assigned (uniform distribution for Datasets 2, 3 and 5). Figure 11 illustrates 

the physical layouts of the five datasets. 
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Figure 11. Layout of the five test datasets 
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The sizes of the datasets, ranging from 20 to 100 customer nodes, correspond to 

typical small to mid-size test instances found in VRP literature. The three disability levels 

used in Dataset 3 would represent real-world evacuees who are either stretcher-bound, 

wheelchair-bound or those who need walking aids.  

B. TEST SET-UP 

The hybrid metaheuristic was programmed using Octave 3.2.4 and run on two 

machines to reduce computation time: a desktop PC clone with an AMD Phenom II X3 

720BE three-core processor at 3.0 GHz, 8 GB RAM, running Linux Ubuntu 10.04 64-bit, 

and a Lenovo PC laptop, with an Intel Centrino Core2 Duo CPU T5800 at 2.0 GHz, with 

3GB RAM and running Linux Ubuntu 10.04 32-bit and Windows XP. The aims of the 

computational analysis are to determine (a) whether the additive or multiplicative 

algorithmic formulation performs better and (b) the choice of parameter value settings 

that would best suit a spectrum of test scenarios. 

The computational analysis was executed using a Nearly Orthogonal Latin 

Hypercube (NOLH) design (Cioppa, 2002; Cioppa & Lucas, 2007; Kleijnen, Sanchez, 

Lucas & Cioppa, 2005). The NOLH experiment design allows the algorithm parameters 

to be varied over a wide range without requiring an exponential number of runs. For 

example, varying the parameter that governs the number of ants alone (Numants) at every 

integer level from 6 to 50 would require 45 scenarios. When combined with varying the 

parameter that governs the maximum pheromone level (τmax) from 1 to 1000, this would 

require 45 × 1,000 = 45,000 scenarios. Further varying the other parameters would lead 

to a dramatic increase in the number of scenarios necessary. On the other hand, if each 

parameter is varied by using its lowest and highest values, there will only be 211 = 2,048 

scenarios, but there will be no visibility of the parameter effects in the middle of their 

ranges. 

The NOLH design can be used to select varying parameter values throughout their 

desired range in such a way that they have essentially no correlation with each other 

while keeping the number of scenarios low. With 11 factors, the NOLH design efficiently 
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only requires 65 scenarios to obtain a broad representation of parameters in these ranges. 

Table 13 shows the input parameter ranges for the NOLH design2 (the resultant 

parameter values for each of the 65 scenarios are found in Appendix B). The worksheet 

used to calculate the NOLH designs was developed by Sanchez (2005). 

 

 
Parameter m Δτ ρ τmax τmin α β Ω σ Candlist Userrank 

Lowest 
Value 

6 0.01 0.001 1 0.01 0 0 3 0 1 0 

Highest 
Value 

50 10 0.999 1000 1 10 10 10 10 6 1 

Decimal  
stepwidth 

0 1 3 0 2 1 1 0 0 0 0 

Table 13. Parameter Ranges for NOLH Experiment Designs (Number of Iterations = 40) 

 

Variability in the analysis output comes from two sources. The first variability is 

the different demand levels from the five datasets that form the input. The second is the 

seed value used for the random number generator within the algorithm. With 65 scenarios 

for each of the five datasets and five random seed values per dataset, 65 x 5 x 5 = 1,625 

replications would be generated. This variation in output is harnessed for the purpose of 

computational analysis in terms of comparing the performance of the additive and 

multiplicative algorithms as well as finding good parameter settings for the chosen 

algorithm. 

C. PRELIMINARY RESULTS 

Figure 12 presents a sample visual demonstration of the optimized route-tour 

schedule computed for Dataset 5.  

 

                                                 

 
2 Another NOLH design version with more ants (70 to 200 ants, versus 6 to 50) was also developed 

and tested in our experimentattion. However, the significantly longer overall computational time (due to the 
1,625 replication runs) led to the adoption of the fewer-ant version in order to speed up empirical analyses.  
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Figure 12. Graphical plots of route-tour solution for Dataset 5 (additive algorithm) 
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The former performance metric is critical as it directly pertains to number of potential 

lives lost. The latter, speed, is of somewhat less importance as even the largest and most 

complex 100-node, 3-disability level, 4-vehicle dataset only takes about three minutes to 

Vehicle 1 
route-tour  

Vehicle 2 
route-tour  

Vehicle 3 
route-tour  

Shelter  

20 

15 

10 

5 

0 
10 5 15 20 25 30 



 86 

converge. In a real-world scenario, the number of customer nodes in a city may scale into 

the tens of thousands such that algorithmic speed then plays a bigger role as a 

performance metric. Nonetheless, it is always possible to keep computational times 

within reasonable levels by harnessing parallel computing during implementation.  

 

 

Figure 13. Comparison of average best solution (lower is better). 

 

Figure 14. Comparison of average convergence times (lower is better). 
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Overall, the additive algorithm achieves comparable solution quality, typically 

more quickly. Critically, when the global optimum is known (five un-served customers in 

Dataset 4), the additive algorithm outperforms the multiplicative formulation.  

To further isolate the effect of algorithm choice, a second set of comparison test 

was conducted where the heuristic element was excluded,setting β = 0 such that the 

algorithms ran with only the pheromone component. Results are in Figure 15 and 

Figure 16. 

 

Figure 15. Comparison of average best solution, excluding heuristic component. 

 

Figure 16. Comparison of average convergence times, excluding heuristic component. 
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Under the no-heuristic configuration, the additive algorithm generally produces 

better solution quality, albeit taking slightly longer convergence time (with the exception 

of Dataset 3). In particular, for Dataset 4 where the global optimum is known, the 

additive algorithm generally produced better solutions under both heuristic and no-

heuristic configurations. Nonetheless, the additive algorithm did perform worse in the 

larger, most realistic scenario in Dataset 3. 

While both formulations invoke the concept of averages in computing 

probabilities, the additive formulation calculates the arithmetic mean while the 

multiplicative formulation uses the geometric mean. The different results can be 

explained by examining the dissimilar probability distributions of choosing the next node, 

(for a heuristic ant sitting on a given node) between the two formulations. Table 14 

illustrates how the additive formulation more widely expands the search space and evenly 

distributes the probabilities of choosing the next node, compared to the multiplicative 

formulation. For example in the case of the neighborhood ant when pheromone level τ is 

very high at 500, the additive formulation moderates the probability of choosing that 

node from 99.8% (in the multiplicative formulation) to a more restrained 75.7%, thus 

imparting a non-zero chance for other nodes to be considered candidates, even though 

their pheromone levels may be magnitudes lower. The same phenomenon is repeated for 

the GRASP-like heuristic. In conjunction with the longer search period that the additive 

formulation takes, this has allowed it to find a better solution generally compared to the 

multiplicative formulation. 

In view of the overall better performance proffered by the additive formulation, 

subsequent empirical analysis will focus on the additive algorithm. 
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Customer 
node 

τ 
(Pheromone 

level) 

Probability of node being 
chosen for η1

  
(neighborhood ant) 

Probability of node being 
chosen for η2

 (GRASP ant) 

Additive Multiplicative Additive Multiplicative 
1 12 0.0563 0.0006 0.0297 0.0008 
2 10 0.0562 0.0004 0.0255 0.0005 
3 500 0.7565 0.9988 0.8465 0.9947 
4 2 0.0559 0.0000 0.0181 0.0000 
5 8 0.0561 0.0003 0.0151 0.0002 
6 6 0.0001 0 0.0122 0.0001 
7 13 0.0005 0 0.0101 0.0003 
8 9 0.0002 0 0.0076 0.0001 
9 10 0.0003 0 0.0057 0.0001 
10 60 0.0101 0 0.0156 0.0025 
11 18 0.0009 0 0.0035 0.0001 
12 50 0.0070 0 0.0096 0.0006 
13 4 0.0000 0 0.0006 0.0000 
14 4 0.0000 0 0.0002 0.0000 
 Total 1 1 1 1 

Table 14. Comparison of Probability Distribution of Choosing the Next Node Between 

Additive and Multiplicative Algorithms (α = 2, β = 2. Ω = 5 for η1
. τ values are random). 

E. PARAMETER EFFECTS 

The next step is to identify a suitable set of parameter value settings for the 

additive algorithm that best caters to a wide range of dataset instances. The analysis 

focuses on establishing appropriate parameter settings that produce better solution quality 

rather than relatively minor improvements in convergence times.  

The JMP software (Version 9.0.1) is used to analyze the computational results. A 

regression model is fitted to the data using stepwise regression. The dependent variable is 

the number of un-served customers, while the covariates (independent variables) are the 

parameters, as well as their 2nd-order polynomial terms and factorial interaction terms. 

The stepwise regression stopping rule adopts a p-value threshold of 0.25 and employs bi-

directional steps. The sorted parameter estimates and the prediction profiler charts are 
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then used to ascertain the general behavior of the solution quality (number of un-served 

customers) as each parameter is varied.  

JMP results for the average best solutions for Datasets 1 to 5 are shown in Figure 

17 to Figure 21, respectively (see Appendix C for full JMP outputs). The estimated 

coefficient for each parameter represents its partial effect on the number of un-served 

customers, i.e., on average (across 65 NOLH scenarios and 5 random seeds), the increase 

(or decrease) in number of un-served customers for every unit increase in the parameter 

value, holding all other parameters constant. 

 

 

 
Figure 17. Dataset 1: JMP output for average best solution  
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Figure 18. Dataset 2: JMP output for average best solution 

 

 

 
Figure 19. Dataset 3: JMP output for average best solution  
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Figure 20. Dataset 4: JMP output for average best solution  

 

 
Figure 21. Dataset 5: JMP output for average best solution  
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Results and discussion of the empirical results are as follows. 

1. Comparative Importance of Parameters  

The relative significance of parameters varies considerably across datasets. 

Some parameters are consistently important. The pheromone weight (α), heuristic 

weight (β) and number of ants used (Numants), as well as their 2nd order and interaction 

terms, repeatedly rank among the topmost critical parameters for all datasets (see 

Tornado Charts in Figure 17 to Figure 21). 

Importance of other parameters varies. The pheromone level limits (τmin and τmax) 

are somewhat significant for most datasets (Datasets 1, 2 and possibly 3 and 4, covering a 

fairly broad range of scenarios (15 to 100 nodes, two to four vehicles and one to three 

disability levels), albeit less so than α, β and number of ants. Nonetheless, they are 

irrelevant for Dataset 5. On the other hand, pheromone deposit (∆τ) and pheromone 

degradation (ρ) figure prominently for Datasets 2, 4 and 5, but play a less important role 

for Dataset 1 and 3. 

The distinction is especially marked for the size of the neighborhood heuristic 

(Ω), use of ranked ants (Userrank) and the length of the best candidate list (Candlist). For 

example, although Ω has some effect for Datasets 1, 3 and 5, it is inconsequential for 

Datasets 2 and 4. Similary, while the size of Candlist and Userrank are important for 

Dataset 4 and 5, they have little effect for Datasets 2 and 3. 

Some parameters are consistently insignificant. The number of elite ants used (σ), 

is found to have minimal influence on solution quality for all five datasets. 

2. Direction of Parameter Effects  

In a similar vein, the direction of the relationships between parameters and 

solution quality varies for different parameters.  

The pheromone weight (α), heuristic weight (β) and number of ants used 

(Numants) exhibits consistent effects on the number of un-served customers. These three 
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parameters largely display decremental effects across all datasets, i.e., a higher 

pheromone or heuristic weight or having more ants reduces the number of un-served 

customers. Where the stepwise regressions show significant influence, pheromone 

degradation (ρ), size of candidate list (Candlist) and size of neighborhood heuristic (Ω) 

show weak incremental effects. Detailed discussion of these results follow. 

Number of ants. The observed effect is similar to that found in literature, although 

the degree varies. The greater the number of ants (i.e., a large colony), the greater 

exploration of possible routes-tours and hence the better the solution proffered. Using too 

few ants may result in a breakdown of their cooperative behavior due to the reduced 

communication and quick evaporation of pheromones along the trails. Nonetheless, 

having too many ants slows down computation time considerably. Dorigo and Stutzle 

(2004) suggest setting the number of ants to be the number of customer nodes. The 

results support this recommendation in terms of balancing solution quality verus 

efficiency. 

Pheromone and heuristic weights.   Figure 22 illustrates the effect of pheromone 

and heuristic weights on probability of choosing a particular node. Stronger pheromone 

weights (α), i.e., making the ants more sensitive to pheromones, whereas low pheromone 

weights would tend towards the classical stochastic greedy algorithm. Similarly, if 

heuristic weight (β) is set near zero, only pheromone is used without any heuristic bias. 

This generally leads to poor results with the rapid emergence of a stagnation situation, 

i.e., all the ants follow the same path and construct the same suboptimal route-tour 

(Dorigo, 1992; Dorigo et al., 1996). To provide good optimization dynamics, Dorigo et 

al. (1996) recommends setting β ≥ α. Dorigo and Stutzle (2004) further recommends 

setting α to be around one and β to be in the range of two to five based on experimental 

study of various ACO algorithms. This is generally in line with our recommended setting 

of 0.5–2 for α and 1–4 for β. 
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Figure 22. Effect of heuristic and pheromone weights (α and β) on probability of 

choosing a particular node. 
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more optimal nodes will stand out from the continual deposits. The key is thus to select 

an appropriate pheromone degradation rate that is not too high to avoid the situation 

where the ant colony prematurely forgets its past experience gained (i.e., loss of 

collective memory), hence impeding the ants’ cooperative behavior. Dorigo and Stutzle 

(2004) recommend setting phereome evaporation to be in the range of 0.02 to 0.5. Based 

on our results, we recommend setting it at 0.1. 

 

 
Figure 23. Effect of pheromone degradation (ρ) on probability of choosing a node  

(τmax = 1000, τmin = 0.05) 
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equal to the total number of nodes, there is no heuristic influence at all because no nodes 

are eliminated from consideration. We recommend setting Ω between 3 to 8. 

Length of Candidate list.   A longer candidate list renders the algorithm less like a 

MMAS and more like a traditional ACS. Nonetheless, while a longer list allows more 

exploration during the search phase, a shorter list serves the optimization phases better as, 

the longer the list, the more poor-quality solutions are considered. If the problem is small 

to medium-sized as in the analysis cases, then a shorter list may offer better solutions for 

the given size of the solution space. The constrained size of the test datasets is also likely 

the reason that the number of elite ants did not play a significant role in determining the 

best solution; we would expect them to do so for larger datasets, but this is a topic for 

future research. 

Results for other parametes are more ambiguous. Directions of effects are 

equivocal for pheromone deposit (∆τ), use of ranked ants (Userrank) and pheromone 

limits (τmax and τmin). For example, where relevant, ∆τ displays a decremental effect for 

Dataset 4 but an incremental effect for Dataset 5, while use of ranked ants has a 

decremental effect for Datasets 1 and 5, but an incremental effect for Dataset 4. 

Nonetheless, Shvotba (2005) noted that ranked ants are more useful in terms of speeding 

up convergence rather than finding the best solution per se. Similarly, τmax and τmin have 

contrasting effects in terms of between Datasets 1, 2, and 4. Nevertheless, experimental 

results as shown in Figure 24 have found that, to more evenly distribute node selection 

probability and avoid stagnation, the lower pheromone trail limits play a more important 

role than τmax, in line with findings by Stutzle (1999). On the other hand, τmax remains 

useful for setting the pheromone values during the occasional trail reinitializations 

whenever the system approaches stagnation or when no improved route has been 

generated for a certain number of consecutive iterations.  
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Figure 24. Effect of upper and lower pheromone limits on probability of choosing a node 

(ρ = 0.5). 
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Dataset 1 

 
Dataset 2 

 
Dataset 3 

 
Dataset 4 

 
Dataset 5 

 
Figure 25. Tweaking of JMP Prediction Profilers to obtain best possible solutions 
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F. CONCLUSIONS FROM EMPIRICAL ANALYSIS 

The empirical analysis has shown that the proposed additive formulation of the 

algorithm offers generally better solution qualty by adopting wider and longer 

exploration than the multiplicative formulation. 

A good suite of parameter settings to use is one that finds a reasonable balance 

between too narrow a focus of the search process, which in the worst case, may lead to 

stagnation behavior, and too weak a guidance of the search, which can cause excessive 

exploration. Investigation of the relationships between parameters and the number of un-

served customers showed that parameter effects may be sensitive to the configuration of 

the dataset and setting of other parameters. 

Analysis of these relationships, as well as taking into consideration findings by 

Dorigo and Stutzle (2004), Shtovba (2005), Le Louarn, Gendreau, and Potvin (2004), 

Çatay (2006), and Gajpal & Abad (2009a) who recommends varied values for various 

ACO implementations based on experience with different types of problems, resulted in 

the parameter values as suggested in Table 15. They should offer a good balance between 

maximizing solution quality while keeping convergence time low, for the small and 

medium-sized datasets studied in these experiments. 

 

Description Recommended range 
Number of ants (Numants) Number of customer nodes 
Pheromone weight (α) 0.5 – 2 
Heuristic weight (β) 1 – 4 
Pheromone degradation (ρ) 0.1 
τmin 0.05 
τmax 1000 
Size of neighborhood heuristic (ant is 
restricted to Ω closest neighbors)  

3 – 8 

Size of Candidate List (Candlist) 5 – 20 
Pheromones deposit (Δτ) 2 – 10 
Binary variable whether to use ranked-
based AS or not (Userrank) 

1 

Number of elite ants (σ) 1 – 10 

Table 15. Recommended Parameter Value Ranges 
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VI. CONCLUSION 

The objective of this thesis is to develop a novel algorithm solution to solve the 

complex Overburdened Vehicle Routing Problem (OB-VRP) first formulated in Apte and 

Heath (2011). The OB-VRP can be construed as an assisted evacuation problem in the 

context of a short-notice disaster, where the aim is to help government officials provide 

aid to citizens who cannot self-evacuate, due to lack of private transportation means or 

disability. The intent is minimize loss of life by developing an evacuation schedule that 

optimally assigns depot-based vehicles and plans routes to pick up as many “customers” 

as possible from their homes to a common shelter, within given constraints in terms of 

the level of disability, vehicle capacities, loading and unloading times, etc. This has been 

achieved. A summary of the work done and avenues for future work are outlined below. 

A. SUMMARY 

The thesis first undertook a wide literature review that examined the OB-VRP 

from both thematic and topical perspectives over the last 60 years. A number of salient 

conclusions are drawn. Firstly, from a problem definition perspective, the OB-VRP is 

fundamentally more challenging and complex than past research problems in both 

humanitarian logistics and VRP fields. From a solution perspective, this has meant that 

traditional solution approaches such as classical heuristics are not suitable or directly 

adaptable for the OB-VRP. 

Among the many candidate metaheuristic approaches, the thesis has opted for the 

nature-inspired ACO approach due to its implementation ease and flexibility. Using the 

Min-Max Ant System (MMAS) as the base algorithm, a number of enhanced features are 

incorporated to improve solution quality and efficiency, e.g., use of best solution list, elite 

ants, ranked contribution system, and addition of heuristic procedures during route 

construction (i.e., nearest-neighborhood and greedy ants).  

For empirical analysis, five new stylized datasets are created to mimic a range of 

test scenarios in terms of size and complexity. The analysis uses an efficient space-filling 
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experimental design method based on Nearly-Orthogonal Latin Hypercubes (NOLH) in 

testing performance. Two possible algorithmic formulations, Dorigo (2006)’s 

multiplicative version and a novel additive version, are investigated. The latter is found to 

offer better solutions by adopting wider and longer exploration than the multiplicative 

formulation. 

The subsequent analysis focused on good metaheuristic parameter settings to use 

that cater to a broad range of test scenarios. Analysis of parameters effects on solution 

quality (in terms of number of un-served customers), as well as taking into consideration 

recommendations from literature, resulted in a set of suggested parameter values that 

should offer a reasonable balance between maximizing solution quality while keeping 

convergence time low, for the small and medium-sized datasets studied in the empirical 

experiments.  

B. DIRECTIONS FOR FURTHER RESEARCH 

There remain many opportunities for further study into the mechanics of 

improving the algorithm and tuning the parameter settings to improve its solution quality 

and speed. Some of these are relatively well-understood and discussed in Chapter V, but 

others are mentioned below as avenues for future work. 

1. Improving Solution Quality  

Local Search.   The literature on metaheuristics also shows us that a promising 

approach to improving solution quality is to couple a local search algorithm with a 

mechanism to generate initial solutions. For example, for the Traveling Salesman 

Problem (TSP), it is well-known that iterated local search algorithms are currently among 

the best-performing algorithms. They iteratively apply local search techniques (e.g., 2-

opt, 2.5-opt, and 3-opt) to initial solutions that are generated by introducing modification 

to some locally optimal solutions. In the context of an ACO-based solution approach, 

once the ants have finished their solution construction, the solutions can be brought to 

their local optimum by applying a local search routine. Then pheromones are updated on 

the arcs of the locally optimized solutions. (Dorigo & Stutzle, 2004). Once local search is 
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added, the randomly-generated initial tours may become good enough such that heuristic 

information is no longer necessary (Dorigo & Stutzle, 2004). Experiments with MMAS 

and ACS on the TSP have confirmed this conjecture, where very high-quality tours were 

obtained when used with local search, even without using heuristic information. 

Multi-Ant Colony Systems (MACS). An alternative method to optimize routes 

would be to add a second ant colony system to influence the node selection. In the current 

implementation, the healthiest solutions are determined by the number of un-served 

customers they leave; however, this may allow more circuitous or time-consuming routes 

in the short term, making it difficult for the most efficient node to be chosen. In other 

words, the “un-served customers” ant colony may unintentionally hem the algorithm into 

a local solution at the expense of the global optimum. To remedy this, the second ant 

colony may optimize, for example, individual route times, favoring the shorter routes. 

The second ant colony would generate its own pheromone matrix and be incorporated 

into a fusion algorithm (Equations 4.4 and 4.5) with its own weight factor (say, γ). The 

MACS could easily be used in conjunction with the Local Search routines. 

Autotuning of parameters. One of the biggest drawbacks to the ACO-based 

routines are its sensitivities to the solution size. For example, if the global optimum 

solution of a particular problem has 100 un-served customers, the amount of pheromones 

deposited will be sharply diluted. Also affected are the best τmax, τmin, and the optimal 

pheromone degradation ρ. A promising avenue of further research would be a way to 

automatically tune the parameters to best match the solution based on size and nature of 

the problem. An excellent alternative would be finding a formulation for the ACO that 

removes the sensitivity to the problem size. 

2. Improving Solution Speed 

The nature of ACO-based routines lends themselves particularly well to 

parallelization. For example, each ant could run on a separate thread, with pheromone 

updating occurring real-time; that is, pheromone updating is not critical to run another 

ant-tour. With the proliferation of high-performance computing available on the Internet, 
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and the low amount of data needed to conduct analysis, it is conceivable that an official 

in an austere location could set up and run a routine remotely using only a satellite or 

cellular phone connection. 

The algorithm in this thesis was coded in Octave; however, for actual 

implementation it should be coded in a more user-friendly manner, such as a Microsoft 

Excel macro or a Java applet, and optimized for maximum speed. 

3.  Automating Data Gathering 

While the code can run large datasets rather efficiently, the bulk of the time spent 

in the field is likely to be in setting up the dataset. Gathering travel times between nodes 

quickly explodes into a large affair as the number of nodes grows. An automated program 

that can compute the travel-time matrix from points on a map would serve well to make 

the program as a whole more usable. 

4.  Morality of Solutions 

While the code optimizes the number of people that are saved, it does not 

differentiate in any fashion among the people. The societal implications of some of the 

solutions should be taken into account. For example, since a stretcher-bound patient takes 

longer to load and occupies more room than a person who is only slightly hobbled, the 

routine will favor picking up those least-disabled. The best analogy for the use of the 

routine is a triage center, where the worst-injured are ignored in order to maximize the 

number who are saved; this may prove unpopular in aggregate. Imagine the furor if the 

government publicly acknowledged ignoring wheelchair-bound people for those who 

were slightly ambulatory. A future evolution of the algorithm may want to weight certain 

disabilities over others to satisfy public opinion. 

C. FINAL REMARKS 

The field of Humanitarian Assistance and Disaster Relief (HADR) continues to 

gain interest and importance. By offering a way of solving an evacuation problem, the 
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algorithmic techniques developed in this body of work can be integrated into a larger 

optimization tools framework and would serve as a discourse toward improving the 

nature of HADR operations as a whole.   
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APPENDIX A. DETAILED DATASET SPECIFICATIONS 

Dataset 1  

No. Type X-
coord 

Y-
coord 

Customer 
disability 

level 

Customer 
loading 

time 
1 Shelter 0 0     
2 Customer 2 2 1 75 
3 Customer -2 2 1 60 
4 Customer -2 -2 1 10 
5 Customer 2 -2 1 15 
6 Customer 4 0 1 18 
7 Customer 3 1 1 5 
8 Customer 5 4 1 2 
9 Customer 1 -2 1 1 
10 Customer 12 -1 1 17 
11 Customer 6 12 1 40 
12 Customer 8 0 1 34 
13 Customer 3 2 1 2 
14 Customer -6 -1 1 5 
15 Customer -5 -4 1 8 
16 Customer 4 -6 1 18 
17 Customer -5 7 1 62 
18 Customer -6 4 1 63 
19 Customer 2 3 1 5 
20 Customer -1 -2 1 6 
21 Customer 1 -7 1 2 
22 Customer 2 7 1 18 
23 Customer 10 -3 1 90 
24 Customer 12 2 1 33 
25 Customer -10 -1 1 1 
26 Customer -4 1 1 2 
27 Customer -2 5 1 18 
28 Customer 3 -6 1 17 
29 Customer 8 3 1 15 
30 Customer 0 0 1 20 
31 Customer -5 2 1 2 
32 Customer -8 3 1 23 
33 Customer 9 0 1 6 
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34 Customer 4 0 1 7 
35 Customer 8 7 1 12 
36 Customer 2 5 1 90 
37 Customer 3 3 1 56 
38 Customer 17 4 1 2 
39 Customer 2 7 1 78 
40 Customer 9 2 1 18 
41 Customer -5 -6 1 4 
42 Depot -7 2     
43 Depot -2 -12     

      

Vehicle 

Capacity for 
disability level 

1 
  

Maximum 
number of 
tours per 
vehicle, R 

Total time 
available, 

T  
1 6 

  
2 200 

2 8 
     

Dataset 2 

No. Type X-coord Y-coord Customer 
disability level 

Customer 
loading time 

1 Shelter 27 14     
2 Customer 60 36 2 23 
3 Customer 25 42 1 46 
4 Customer 22 51 1 49 
5 Customer 37 50 3 46 
6 Customer 16 57 1 3 
7 Customer 40 24 3 36 
8 Customer 28 18 1 9 
9 Customer 8 40 3 34 

10 Customer 44 49 1 10 
11 Customer 38 19 3 7 
12 Customer 50 28 3 21 
13 Customer 29 1 1 20 
14 Customer 30 53 1 24 
15 Customer 50 2 1 36 
16 Customer 53 59 3 1 
17 Customer 9 53 2 17 
18 Customer 35 50 2 47 
19 Customer 23 5 2 43 
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20 Customer 28 56 3 39 
21 Customer 43 16 3 25 
22 Customer 45 38 3 38 
23 Customer 49 34 2 15 
24 Customer 47 48 3 41 
25 Customer 43 44 3 13 
26 Customer 7 57 2 45 
27 Customer 31 33 2 21 
28 Customer 15 27 3 0 
29 Customer 44 43 1 32 
30 Customer 25 40 2 34 
31 Customer 22 52 2 40 
32 Customer 43 21 2 43 
33 Customer 34 20 2 44 
34 Customer 52 36 3 19 
35 Customer 32 23 2 48 
36 Customer 9 30 2 36 
37 Customer 28 46 3 15 
38 Customer 42 24 1 35 
39 Customer 8 9 1 24 
40 Customer 46 3 3 9 
41 Customer 2 0 2 22 
42 Depot 18 31     
43 depot 19 8     
44 Depot 44 30     
45 Depot 11 33     

      

Vehicle 

Capacity for 
disability level 

1 

Capacity 
for 

disability 
level 2 

Capacity 
for 

disability 
level 3 

 

Maximum 
number 
of tours 
per 
vehicle, R 

Total time 
available, T  

1 3 6 0 
 

5 500 
2 0 5 4 

  3 1 5 1 
  4 6 1 5 
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Dataset 3 

No. Type X-coord Y-
coord 

Customer 
disability level 

Customer 
loading 

time 

1 Shelter 19 8     
2 Customer 14 17 1 6 
3 Customer 9 6 2 12 
4 Customer 11 11 2 12 
5 Customer 11 18 2 12 
6 Customer 13 5 1 6 
7 Customer 9 10 2 12 
8 Customer 19 7 1 6 
9 Customer 11 18 1 6 

10 Customer 6 12 2 12 
11 Customer 0 6 2 12 
12 Customer 0 15 2 12 
13 Customer 4 5 1 6 
14 Customer 18 16 1 6 
15 Customer 20 15 1 6 
16 Customer 6 14 2 12 
17 Customer 15 16 2 12 
18 Customer 18 7 1 6 
19 Customer 17 11 2 12 
20 Customer 5 11 1 6 
21 Customer 11 3 1 6 
22 Customer 19 15 2 12 
23 Customer 14 17 2 12 
24 Customer 10 6 1 6 
25 Customer 16 16 2 12 
26 Customer 9 18 1 6 
27 Customer 3 5 1 6 
28 Customer 13 2 2 12 
29 Customer 9 19 2 12 
30 Customer 2 12 2 12 
31 Customer 12 18 2 12 
32 Customer 3 11 2 12 
33 Customer 18 18 1 6 
34 Customer 4 1 2 12 
35 Customer 19 6 2 12 
36 Customer 17 6 1 6 
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37 Customer 13 14 2 12 
38 Customer 2 6 2 12 
39 Customer 18 6 2 12 
40 Customer 8 2 2 12 
41 Customer 17 20 2 12 
42 Customer 8 10 1 6 
43 Customer 7 16 1 6 
44 Customer 2 5 2 12 
45 Customer 13 18 1 6 
46 Customer 12 17 1 6 
47 Customer 7 1 1 6 
48 Customer 16 14 1 6 
49 Customer 13 11 2 12 
50 Customer 19 20 1 6 
51 Customer 13 7 2 12 
52 Customer 0 4 2 12 
53 Customer 19 16 1 6 
54 Customer 18 20 1 6 
55 Customer 14 18 1 6 
56 Customer 9 14 2 12 
57 Customer 13 14 1 6 
58 Customer 3 0 2 12 
59 Customer 16 13 2 12 
60 Customer 7 17 1 6 
61 Customer 5 5 1 6 
62 Customer 17 9 1 6 
63 Customer 15 16 2 12 
64 Customer 9 14 1 6 
65 Customer 14 12 1 6 
66 Customer 1 15 2 12 
67 Customer 4 13 2 12 
68 Customer 18 3 2 12 
69 Customer 9 18 2 12 
70 Customer 2 10 1 6 
71 Customer 18 10 1 6 
72 Customer 3 8 2 12 
73 Customer 2 20 1 6 
74 Customer 0 11 2 12 
75 Customer 0 20 1 6 
76 Customer 14 8 2 12 
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77 Customer 16 6 2 12 
78 Customer 3 18 2 12 
79 Customer 1 1 2 12 
80 Customer 14 17 1 6 
81 Customer 6 14 1 6 
82 Customer 17 12 2 12 
83 Customer 16 0 2 12 
84 Customer 5 9 1 6 
85 Customer 4 10 1 6 
86 Customer 16 13 2 12 
87 Customer 13 6 2 12 
88 Customer 6 19 1 6 
89 Customer 14 8 2 12 
90 Customer 13 14 2 12 
91 Customer 11 17 2 12 
92 Customer 14 17 1 6 
93 Customer 14 3 1 6 
94 Customer 17 13 2 12 
95 Customer 12 5 2 12 
96 Customer 18 19 1 6 
97 Customer 12 12 2 12 
98 Customer 8 19 1 6 
99 Customer 5 10 1 6 

100 Customer 15 2 2 12 
101 Customer 3 7 2 12 
102 Depot 18 5     
103 Depot 12 1     
104 Depot 17 12     
105 Depot 8 7     

      

Vehicle 

Capacity 
for 

disability 
level 1 

Capacity 
for 

disability 
level 2 

 

Maximum 
number of 
tours per 
vehicle, R 

Total time 
available, 

T  
1 1 5 

 
6 400 

2 3 4 
   3 3 4 
   4 1 3 
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Dataset 4 

No. Type 
X-
coord 

Y-
coord 

Customer 
disability 
level 

Customer 
loading 
time 

1 Shelter 0 0     
2 Customer 1 1 1 1 
3 Customer 2 2 1 1 
4 Customer -2 -2 1 1 
5 Customer -1 -1 1 1 
6 Customer 3 3 1 1 
7 Customer -3 -3 1 1 
8 Customer 4 4 1 1 
9 Customer -4 -4 1 1 

10 Customer -5 -5 1 1 
11 Customer 5 5 1 1 
12 Customer 8 -8 1 1 
13 Customer 10 -10 1 1 
14 Customer -10 10 1 1 
15 Customer -8 8 1 1 
16 Customer 15 0 1 1 
17 Depot -6 -6     
18 Depot 6 6     

      

Vehicle 

Capacity 
for 

disability 
level 1 

  

Maximum 
number of 
tours per 
vehicle, R 

Total time 
available, 
T  

1 5 
  

4 15 
2 5 

     

Dataset 5 

No. Type X-coord Y-
coord 

Customer 
disability level 

Customer 
loading time 

1 Shelter 27 4     
2 Customer 22 11 1 10 
3 Customer 10 7 2 20 
4 Customer 26 7 1 10 
5 Customer 19 5 2 20 
6 Customer 4 10 1 10 
7 Customer 5 22 1 10 
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8 Customer 27 7 1 10 
9 Customer 24 0 1 10 

10 Customer 3 11 2 20 
11 Customer 9 21 1 10 
12 Customer 11 21 2 20 
13 Customer 29 2 2 20 
14 Customer 11 2 1 10 
15 Customer 22 7 1 10 
16 Customer 9 24 2 20 
17 Customer 16 18 2 20 
18 Customer 18 6 2 20 
19 Customer 26 5 1 10 
20 Customer 15 9 1 10 
21 Customer 23 21 2 20 
22 Depot 16 1     
23 Depot 27 14     
24 Depot 17 15     

      

Vehicle 

Capacity 
for 

disability 
level 1 

Capacity 
for 

disability 
level 2 

 

Maximum 
number of 
tours per 
vehicle, R 

Total time 
available, T  

1 2 2 
 

6 300 
2 1 1 

   3 1 3 
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APPENDIX B. NOLH DESIGN SPECIFICATIONS 

Parameter iter m Δτ ρ τmax τmin  α β Ω σ w Best 
 

           
 

Lowest Value  5 6 0.01 0.001 1 0.01 0 0 3 0 1 0 
Highest Value 100 50 10 0.999 1000 1 10 10 10 10 6 1 

Decimal places  
per interval 

0 0 1 3 0 2 1 1 0 0 0 0 

 
           

 
Scenario 1 73 8 3.6 0.328 126 0.77 8.0 4.8 10 7 4 1 
Scenario 2 96 38 1.1 0.422 344 0.26 5.5 7.5 8 9 5 0 
Scenario 3 90 22 9.5 0.219 298 0.86 1.6 4.5 6 6 5 1 
Scenario 4 66 45 7.2 0.453 63 0.43 2.7 2.7 4 10 6 1 
Scenario 5 93 27 1.9 0.017 95 0.16 2.5 6.1 7 5 1 1 
Scenario 6 55 47 2.4 0.484 157 0.66 1.4 8.6 9 1 3 1 
Scenario 7 78 14 5.3 0.032 251 0.33 8.9 4.2 4 4 3 1 
Scenario 8 82 40 9.2 0.313 376 0.92 7.0 0.2 5 3 1 1 
Scenario 9 70 7 0.2 0.812 407 0.61 3.9 0.9 9 3 5 0 
Scenario 10 97 36 4.8 0.765 1 0.29 9.2 3.8 8 0 4 0 
Scenario 11 54 7 9.7 0.531 204 0.44 3.1 6.9 3 2 5 0 
Scenario 12 99 29 6.9 0.921 173 0.07 3.8 8.1 5 4 4 0 
Scenario 13 57 16 3.3 0.640 391 0.49 1.9 2.8 10 10 2 0 
Scenario 14 79 30 4.2 0.890 266 0.97 0.5 0.0 7 5 2 0 
Scenario 15 60 20 7.8 0.952 438 0.23 4.7 9.4 4 8 1 0 
Scenario 16 69 31 5.5 0.718 141 0.95 10.0 5.6 6 8 3 0 
Scenario 17 87 25 3.9 0.126 672 1.00 7.8 9.7 7 6 3 0 
Scenario 18 58 44 2.7 0.344 579 0.46 8.3 8.0 6 7 2 0 
Scenario 19 75 23 5.6 0.297 781 0.89 0.3 4.1 7 8 3 0 
Scenario 20 63 38 8.6 0.063 547 0.18 4.4 1.7 9 9 1 0 
Scenario 21 84 15 4.1 0.095 984 0.38 0.2 7.0 5 1 3 0 
Scenario 22 81 42 0.0 0.157 516 0.71 4.8 8.9 4 3 6 0 
Scenario 23 100 24 8.0 0.251 969 0.13 7.2 1.3 7 3 4 0 
Scenario 24 61 50 8.3 0.375 688 0.54 5.8 2.2 10 1 5 0 
Scenario 25 64 17 0.9 0.594 813 0.74 9.4 1.6 4 2 2 1 
Scenario 26 76 34 1.6 0.999 766 0.20 6.4 3.6 6 5 1 1 
Scenario 27 85 10 7.5 0.796 532 0.91 3.3 9.5 8 3 2 1 
Scenario 28 91 43 6.3 0.827 922 0.32 1.3 6.6 8 4 3 1 
Scenario 29 94 19 1.3 0.609 641 0.21 4.1 0.8 5 9 5 1 
Scenario 30 72 47 3.4 0.734 891 0.98 3.4 5.3 3 8 4 1 
Scenario 31 67 12 7.0 0.562 953 0.41 7.7 7.7 9 10 5 1 
Scenario 32 88 35 9.4 0.859 719 0.64 9.1 6.7 8 6 5 1 
Scenario 33 53 28 5.0 0.500 501 0.51 5.0 5.0 7 5 4 1 
Scenario 34 32 48 6.4 0.672 875 0.24 2.0 5.2 3 3 3 0 
Scenario 35 9 18 8.9 0.578 657 0.75 4.5 2.5 5 1 2 1 
Scenario 36 15 34 0.5 0.781 703 0.15 8.4 5.5 7 4 2 0 
Scenario 37 39 11 2.8 0.547 938 0.58 7.3 7.3 9 0 1 0 
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Scenario 38 12 29 8.1 0.983 906 0.85 7.5 3.9 6 5 6 0 
Scenario 39 50 9 7.7 0.516 844 0.35 8.6 1.4 4 9 4 0 
Scenario 40 27 42 4.7 0.968 750 0.68 1.1 5.8 9 6 4 0 
Scenario 41 23 16 0.8 0.687 625 0.09 3.0 9.8 8 7 6 0 
Scenario 42 35 49 9.8 0.188 594 0.40 6.1 9.1 4 7 2 1 
Scenario 43 8 20 5.2 0.235 1000 0.72 0.8 6.3 5 10 3 1 
Scenario 44 51 49 0.3 0.469 797 0.57 6.9 3.1 10 8 2 1 
Scenario 45 6 27 3.1 0.079 828 0.94 6.3 1.9 8 6 3 1 
Scenario 46 48 40 6.7 0.360 610 0.52 8.1 7.2 3 0 5 1 
Scenario 47 26 26 5.8 0.110 735 0.04 9.5 10.0 6 5 5 1 
Scenario 48 45 36 2.2 0.048 563 0.78 5.3 0.6 9 2 6 1 
Scenario 49 36 25 4.5 0.282 860 0.06 0.0 4.4 7 2 4 1 
Scenario 50 18 31 6.1 0.874 329 0.01 2.2 0.3 6 4 4 1 
Scenario 51 47 12 7.3 0.656 422 0.55 1.7 2.0 7 3 5 1 
Scenario 52 30 33 4.4 0.703 220 0.12 9.7 5.9 6 2 4 1 
Scenario 53 42 18 1.4 0.937 454 0.83 5.6 8.3 4 1 6 1 
Scenario 54 21 41 5.9 0.905 17 0.63 9.8 3.0 8 9 4 1 
Scenario 55 24 14 10.0 0.843 485 0.30 5.2 1.1 9 7 1 1 
Scenario 56 5 32 2.0 0.750 32 0.88 2.8 8.8 6 7 3 1 
Scenario 57 44 6 1.7 0.625 313 0.47 4.2 7.8 3 9 2 1 
Scenario 58 41 39 9.1 0.406 188 0.27 0.6 8.4 9 8 5 0 
Scenario 59 29 23 8.4 0.001 235 0.81 3.6 6.4 7 5 6 0 
Scenario 60 20 46 2.5 0.204 469 0.10 6.7 0.5 5 8 5 0 
Scenario 61 14 13 3.8 0.173 79 0.69 8.8 3.4 5 6 4 0 
Scenario 62 11 37 8.8 0.391 360 0.80 5.9 9.2 8 1 2 0 
Scenario 63 33 9 6.6 0.266 110 0.03 6.6 4.7 10 2 3 0 
Scenario 64 38 45 3.0 0.438 48 0.60 2.3 2.3 4 0 2 0 
Scenario 65 17 21 0.6 0.141 282 0.37 0.9 3.3 5 4 2 0 
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APPENDIX C. FULL JMP REGRESSION OUTPUTS 
Dataset 1 

 

14

15

16

17

18

19

be
st

 A
ct

ua
l

14 15 16 17 18 19

best Predicted P<.0001

RSq=0.64 RMSE=0.5292

Actual by Predicted Plot

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.637825

0.5171

0.52921

14.91385

65

Summary of Fit

Model

Error

C. Total

Source

16

48

64

DF

23.674481

13.443058

37.117538

Sum of

Squares
1.47966

0.28006

Mean Square
5.2833

F Ratio

<.0001*

Prob > F

Analysis of Variance

Intercept

numants

pherdegrade

taumax

taumin

alpha

beta

omega

userank[0]

(pherdegrade-0.50002)*(taumin-0.50508)

(taumax-500.508)*(taumin-0.50508)

(taumax-500.508)*userank[0]

(taumin-0.50508)*(beta-5.00308)

(taumin-0.50508)*userank[0]

(beta-5.00308)*(omega-6.50769)

(taumin-0.50508)*(taumin-0.50508)

(alpha-5.00308)*(alpha-5.00308)

Term

15.252414

-0.012788

0.306539

-9.444e-5

-0.003607

-0.107355

-0.054674

0.066647

0.0370168

1.1947539

-0.002433

-0.000296

-0.098633

0.5624976

-0.033823

2.0098023

0.0138277

Estimate

0.386206

0.005087

0.224726

0.000224

0.227471

0.022444

0.022525

0.031867

0.066671

0.724964

0.000815

0.000233

0.073963

0.243743

0.012356

0.888236

0.009889

Std Error

39.49

-2.51

1.36

-0.42

-0.02

-4.78

-2.43

2.09

0.56

1.65

-2.99

-1.27

-1.33

2.31

-2.74

2.26

1.40

t Ratio

<.0001*

0.0153*

0.1789

0.6758

0.9874

<.0001*

0.0190*

0.0418*

0.5813

0.1059

0.0044*

0.2093

0.1886

0.0254*

0.0087*

0.0282*

0.1685

Prob>|t|

Parameter Estimates

alpha

(taumax-500.508)*(taumin-0.50508)

(beta-5.00308)*(omega-6.50769)
numants

beta

(taumin-0.50508)*userank[0]

(taumin-0.50508)*(taumin-0.50508)

omega

(pherdegrade-0.50002)*(taumin-0.50508)

(alpha-5.00308)*(alpha-5.00308)

pherdegrade

(taumin-0.50508)*(beta-5.00308)

(taumax-500.508)*userank[0]

userank[0]

taumax

taumin

Term

-0.107355

-0.002433

-0.033823

-0.012788

-0.054674

0.5624976

2.0098023

0.066647

1.1947539

0.0138277

0.306539

-0.098633

-0.000296

0.0370168

-9.444e-5

-0.003607

Estimate

0.022444

0.000815

0.012356

0.005087

0.022525

0.243743

0.888236

0.031867

0.724964

0.009889

0.224726

0.073963

0.000233

0.066671

0.000224

0.227471

Std Error

-4.78

-2.99

-2.74

-2.51

-2.43

2.31

2.26

2.09

1.65

1.40

1.36

-1.33

-1.27

0.56

-0.42

-0.02

t Ratio

<.0001*

0.0044*

0.0087*

0.0153*

0.0190*

0.0254*

0.0282*

0.0418*

0.1059

0.1685
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0.9874

Prob>|t|
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Dataset 2 

 

0.5

1

1.5

2

2.5

3

3.5

4

4.5

be
st

 A
ct

ua
l

0.5 1 1.5 2 2.5 3 3.5 4 4.5

best Predicted P<.0001

RSq=0.88 RMSE=0.2824

Actual by Predicted Plot

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.876519

0.841945

0.282424

1.658462
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Summary of Fit

Model

Error

C. Total

Source

14

50

64

DF

28.309681

3.988166

32.297846

Sum of

Squares
2.02212

0.07976

Mean Square
25.3515

F Ratio

<.0001*

Prob > F

Analysis of Variance

Intercept

numants

pherdegrade

taumax

taumin

alpha

beta

(numants-28.0308)*(pherdegrade-0.50002)

(taumax-500.508)*(taumin-0.50508)

(taumax-500.508)*(alpha-5.00308)

(taumax-500.508)*(beta-5.00308)

(taumin-0.50508)*(alpha-5.00308)

(alpha-5.00308)*(beta-5.00308)

(pherdegrade-0.50002)*(pherdegrade-0.50002)

(alpha-5.00308)*(alpha-5.00308)

Term

3.0814267

-0.013456

0.0621312

3.9189e-6

-0.047386

-0.099588

-0.172617

-0.05945

-0.001106

-7.118e-5

-8.724e-5

0.1005417

0.0162713

1.7107513

0.0188542

Estimate

0.172888

0.002714

0.11975

0.00012

0.120753

0.011958

0.011958

0.014347

0.000431

0.000043

6.529e-5

0.041658

0.005952

0.478801

0.005693

Std Error

17.82

-4.96

0.52

0.03

-0.39

-8.33

-14.44

-4.14

-2.56

-1.65

-1.34

2.41

2.73

3.57

3.31

t Ratio

<.0001*

<.0001*

0.6062

0.9740

0.6964

<.0001*

<.0001*

0.0001*

0.0134*

0.1043

0.1875

0.0195*

0.0086*

0.0008*

0.0017*

Prob>|t|

Parameter Estimates

beta
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numants

(numants-28.0308)*(pherdegrade-0.50002)

(pherdegrade-0.50002)*(pherdegrade-0.50002)

(alpha-5.00308)*(alpha-5.00308)

(alpha-5.00308)*(beta-5.00308)

(taumax-500.508)*(taumin-0.50508)

(taumin-0.50508)*(alpha-5.00308)

(taumax-500.508)*(alpha-5.00308)

(taumax-500.508)*(beta-5.00308)

pherdegrade

taumin

taumax

Term

-0.172617

-0.099588

-0.013456

-0.05945

1.7107513

0.0188542

0.0162713

-0.001106

0.1005417

-7.118e-5

-8.724e-5

0.0621312

-0.047386

3.9189e-6

Estimate

0.011958

0.011958

0.002714

0.014347

0.478801

0.005693

0.005952

0.000431

0.041658

0.000043

6.529e-5

0.11975

0.120753

0.00012

Std Error

-14.44

-8.33

-4.96

-4.14

3.57

3.31

2.73

-2.56

2.41

-1.65

-1.34

0.52

-0.39

0.03

t Ratio

<.0001*

<.0001*

<.0001*

0.0001*

0.0008*

0.0017*

0.0086*

0.0134*

0.0195*

0.1043

0.1875

0.6062

0.6964

0.9740
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Sorted Parameter Estimates

0.5

1.5

2.5

3.5

4.5

be
st

1.
35

14
88

±0
.1

54
67

3

10 20 30 40 50

28.031

numants

-0
.

0.
2

0.
5

0.
8

1.
1

0.50002

pherdegrade

-1
0

20 50 80 11

500.51

taumax

0 0.
2

0.
4

0.
6

0.
8

1

0.50508

taumin

-1 2 5 8 11

5.003

alpha

-1 2 5 8 11

5.003

beta

Prediction Profiler

Response best



 119 

Dataset 4 
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0.844472
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Summary of Fit

Model

Error

C. Total

Source

22

42

64

DF

9.491346

1.748038

11.239385

Sum of

Squares
0.431425

0.041620

Mean Square
10.3658

F Ratio

<.0001*

Prob > F

Analysis of Variance

Intercept

numants

pherdep

pherdegrade

taumax

taumin

alpha

beta

Candlist

userank[0]

(numants-28.0308)*(pherdegrade-0.50002)

(numants-28.0308)*(taumin-0.50508)

(pherdep-5.00462)*(beta-5.00308)

(pherdep-5.00462)*(Candlist-3.50769)

(taumax-500.508)*(taumin-0.50508)

(taumax-500.508)*userank[0]

(taumin-0.50508)*(alpha-5.00308)

(alpha-5.00308)*(beta-5.00308)

(alpha-5.00308)*userank[0]

(Candlist-3.50769)*userank[0]

(taumax-500.508)*(taumax-500.508)

(alpha-5.00308)*(alpha-5.00308)

(beta-5.00308)*(beta-5.00308)

Term

5.6768728

-0.005873

-0.011821

0.1698374

5.1783e-5

-0.160588

-0.03386

-0.084351

0.0309212

-0.026954

-0.01936

0.0249629

0.0117169

-0.012424

-0.000577

0.0001536

0.0502044

0.0162017

0.036172

0.060065

-5.77e-7

0.0175901

0.0122354

Estimate

0.148438

0.001961

0.008646

0.086649

8.658e-5

0.087693

0.008654

0.008663

0.016594

0.025607

0.01284

0.009642

0.003741

0.006285

0.000326

0.000109

0.030352

0.00461

0.009836

0.021652

4.584e-7

0.004219

0.004676

Std Error

38.24

-2.99

-1.37

1.96

0.60

-1.83

-3.91

-9.74

1.86

-1.05

-1.51

2.59

3.13

-1.98

-1.77

1.41

1.65

3.51

3.68

2.77

-1.26

4.17

2.62

t Ratio

<.0001*

0.0046*

0.1788

0.0566

0.5530

0.0742

0.0003*

<.0001*

0.0694

0.2986

0.1391

0.0132*

0.0032*

0.0547

0.0838

0.1652

0.1056

0.0011*

0.0007*

0.0082*

0.2150

0.0001*

0.0123*

Prob>|t|

Parameter Estimates
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(taumax-500.508)*(taumax-500.508)
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Term

-0.084351

0.0175901

-0.03386

0.036172

0.0162017

0.0117169

-0.005873

0.060065

0.0122354

0.0249629

-0.012424

0.1698374

0.0309212

-0.160588

-0.000577

0.0502044

-0.01936

0.0001536

-0.011821

-5.77e-7

-0.026954

5.1783e-5

Estimate

0.008663

0.004219

0.008654
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0.00461

0.003741

0.001961
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0.004676

0.009642

0.006285

0.086649

0.016594

0.087693

0.000326

0.030352

0.01284

0.000109

0.008646

4.584e-7

0.025607

8.658e-5

Std Error

-9.74
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-2.99
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t Ratio

<.0001*
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Dataset 5 
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Mean of Response

Observations (or Sum Wgts)

0.732

0.635064

0.088776

7.932308

65

Summary of Fit

Model

Error

C. Total

Source

17

47

64

DF

1.0117366

0.3704173

1.3821538

Sum of

Squares
0.059514

0.007881

Mean Square
7.5514

F Ratio

<.0001*

Prob > F

Analysis of Variance

Intercept

numants

pherdep

pherdegrade

alpha

beta

omega

Candlist

userank[0]

(numants-28.0308)*(pherdep-5.00462)

(numants-28.0308)*(Candlist-3.50769)

(numants-28.0308)*userank[0]

(pherdep-5.00462)*(Candlist-3.50769)

(pherdegrade-0.50002)*(omega-6.50769)

(alpha-5.00308)*userank[0]

(beta-5.00308)*(omega-6.50769)

(beta-5.00308)*(Candlist-3.50769)

(alpha-5.00308)*(alpha-5.00308)

Term

7.9717517

-0.004835

0.0083437

0.0931283

-0.015694

-0.005824

0.0041357

0.0156549

0.021938

0.000463

0.0017243

0.0011725

-0.009284

-0.073264

0.0089431

0.0049153

-0.004782

0.0046814

Estimate

0.065228

0.000854

0.003762

0.037714

0.003766

0.003784

0.005348

0.00722

0.01111

0.000288

0.000608

0.00088

0.002319

0.023269

0.004424

0.002103

0.002656

0.001692

Std Error

122.21

-5.66

2.22

2.47

-4.17

-1.54

0.77

2.17

1.97

1.61

2.84

1.33

-4.00

-3.15

2.02

2.34

-1.80

2.77

t Ratio

<.0001*

<.0001*

0.0314*

0.0172*

0.0001*

0.1305

0.4432

0.0352*

0.0542

0.1144

0.0067*

0.1891

0.0002*

0.0028*

0.0489*

0.0238*

0.0783

0.0081*

Prob>|t|

Parameter Estimates

numants

alpha

(pherdep-5.00462)*(Candlist-3.50769)

(pherdegrade-0.50002)*(omega-6.50769)

(numants-28.0308)*(Candlist-3.50769)

(alpha-5.00308)*(alpha-5.00308)

pherdegrade

(beta-5.00308)*(omega-6.50769)
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Candlist

(alpha-5.00308)*userank[0]
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(beta-5.00308)*(Candlist-3.50769)

(numants-28.0308)*(pherdep-5.00462)

beta

(numants-28.0308)*userank[0]

omega

Term

-0.004835

-0.015694

-0.009284

-0.073264

0.0017243

0.0046814

0.0931283

0.0049153

0.0083437

0.0156549

0.0089431

0.021938

-0.004782

0.000463

-0.005824

0.0011725

0.0041357

Estimate

0.000854

0.003766

0.002319

0.023269

0.000608

0.001692

0.037714

0.002103

0.003762

0.00722

0.004424

0.01111

0.002656

0.000288

0.003784

0.00088

0.005348

Std Error

-5.66

-4.17

-4.00

-3.15

2.84

2.77

2.47

2.34

2.22

2.17

2.02

1.97

-1.80

1.61

-1.54

1.33

0.77

t Ratio

<.0001*

0.0001*

0.0002*

0.0028*

0.0067*

0.0081*

0.0172*

0.0238*

0.0314*

0.0352*

0.0489*

0.0542

0.0783

0.1144

0.1305

0.1891

0.4432
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